

LECTURES NOTE

ON

OBJECT ORIENTED METHODOLGY

(3RD SEMESTER)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

GANAPATI INSTITUTE OF ENGG. AND TECHNOLOGY(POLYTECHNIC)

 Prepared by : Mr SMRUTI RANJAN PATTNAIK

 LECT. IN CSE

 Object Oriented Methodology

OOPs (Object-Oriented Programming System)

Object means a real-world entity such as a pen, chair, table, computer, watch, etc.

ObjectOriented Programming is a methodology or paradigm to design a program using classes

and objects. It simplifies software development and maintenance by providing some concepts:

Object

Class

Inheritance

Polymorphism

Abstraction

Encapsulation

Object

Java Object

Any entity that has state and behavior is known as an object. For example, a chair, pen, table,

keyboard, bike, etc. It can be physical or logical.

An Object can be defined as an instance of a class. An object contains an address and takes up

some space in memory. Objects can communicate without knowing the details of each other's

data or code. The only necessary thing is the type of message accepted and the type of

response returned by the objects.

Example: A dog is an object because it has states like color, name, breed, etc. as well as

behaviors like wagging the tail, barking, eating, etc.

Class

Collection of objects is called class. It is a logical entity.

A class can also be defined as a blueprint from which you can create an individual object. Class

doesn't consume any space.

Inheritance

When one object acquires all the properties and behaviors of a parent object, it is known as

inheritance. It provides code reusability. It is used to achieve runtime polymorphism.

Polymorphism in Java

Polymorphism

If one task is performed in different ways, it is known as polymorphism. For example: to

convince the customer differently, to draw something, for example, shape, triangle, rectangle,

etc.

In Java, we use method overloading and method overriding to achieve polymorphism.

Another example can be to speak something; for example, a cat speaks meow, dog barks woof,

etc.

Abstraction

Hiding internal details and showing functionality is known as abstraction. For example phone

call, we don't know the internal processing.

Encapsulation

Binding (or wrapping) code and data together into a single unit are known as encapsulation. For

example, a capsule, it is wrapped with different medicines.

A java class is the example of encapsulation. Java bean is the fully encapsulated class because all

the data members are private here.

OOP's top benefits:

Modularity for easier troubleshooting. When working with object-oriented programming

languages, you know exactly where to look when something goes wrong. ...

Reuse of code through inheritance. ...

Flexibility through polymorphism. ...

Effective problem solving.

Applications of Object-Oriented Programming

Client-Server Systems. ...

Object-Oriented Databases. ...

Object-Oriented Databases. ...

Real-Time System Design. ...

Simulation and Modeling System. ...

Hypertext and Hypermedia. ...

Neural Networking and Parallel Programming. ...

Office Automation Systems.

What is Java

Java is an Object-Oriented Programming (OOP) structure. Java is a class-based programming

language. Java technology is used for developing both, applets and applications. Provides an

easy to use: Avoids many of the pitfalls of other languages. concept and syntax of class

in java

Everything in Java is associated with classes and objects, along with its attributes and methods.

For example: in real life, a car is an object. The car has attributes, such as weight and color, and

methods, such as drive and brake. A Class is like an object constructor, or a "blueprint" for

creating objects.

What is the syntax of a class?

A syntax class may have formal parameters, in which case they are bound as variables in the

body. Syntax classes support optional arguments and keyword arguments using the same syntax

as lambda. The body of the syntax-class definition contains a non-empty sequence of pattern

variants. string literal in java

A string literal in Java is basically a sequence of characters from the source character set used by

Java programmers to populate string objects or to display text to a user. These characters could

be anything like letters, numbers or symbols which are enclosed within two quotation marks

Arrays in Java

An array in Java is a group of like-typed variables referred to by a common name.

In Java, all arrays are dynamically allocated. (discussed below)

Arrays are stored in contagious memory [consecutive memory locations].

Since arrays are objects in Java, we can find their length using the object property A Java

array variable can also be declared like other variables with [] after the data type.

The variables in the array are ordered, and each has an index beginning from 0.

Java array can also be used as a static field, a local variable, or a method parameter.

The size of an array must be specified by int or short value and not long.

The direct superclass of an array type is Object.

Every array type implements the interfaces Cloneable and java.io.Serializable.

This storage of arrays helps us in randomly accessing the elements of an array [Support Random

Access].

The size of the array cannot be altered(once initialized). However, an array reference can be

made to point to another array.

Non primitive Datatypes

Non-primitive types are created by the programmer and is not defined by Java (except for String

Non-primitive types can be used to call methods to perform certain operations, while primitive

types cannot. A primitive type has always a value, while non-primitive types can be null

There are five types of Non-Primitive data types in Java : Class, Object, String, Array, and

Interface. They are used to store multiple values of either the same data type or different data

types.

Execution model of java

Java's program execution model is divided into two distinct stages – Compilation, Bytecode

Execution. These two stages are not directly related to each other. In fact, most of the times the

second step occurs on a different machine and usually long after the first step.

JVM (Java Virtual Machine)

JVM (Java Virtual Machine) is an abstract machine. It is a specification that provides runtime

environment in which java bytecode can be executed.

JVMs are available for many hardware and software platforms (i.e. JVM is platform dependent).

What is JVM

A specification where working of Java Virtual Machine is specified. But implementation provider

is independent to choose the algorithm. Its implementation has been provided by Oracle and

other companies.

An implementation Its implementation is known as JRE (Java Runtime Environment).

Runtime Instance Whenever you write java command on the command prompt to run the java

class, an instance of JVM is created.

concept and syntax of Methods in java

A method is a block of code which only runs when it is called. You can pass data, known as

parameters, into a method. Methods are used to perform certain actions, and they are also

known as functions.

The syntax to declare a method is: returnType methodName() { // method body } Here,

returnType - It specifies what type of value a method returns For example if a method has an int

return type then it returns an integer value. If the method does not return a value, its return

type is void .

Widening and narrowing conversion in java

Widening conversions preserve the source value but can change its representation. This occurs if

you convert from an integral type to Decimal , or from Char to String . A narrowing conversion

changes a value to a data type that might not be able to hold some of the possible values.1 Data

Types in Java

Data types specify the different sizes and values that can be stored in the variable. There are two

types of data types in Java:

Primitive data types: The primitive data types include boolean, char, byte, short, int, long, float

and double.

Non-primitive data types: The non-primitive data types include Classes, Interfaces, and Arrays.

A first program to java

Java "Hello, World!" Program

// Your First Program

Objects and Classes in Java
we will learn about Java objects and classes. In object-oriented programming technique, we

design a program using objects and classes.

An object in Java is the physical as well as a logical entity, whereas, a class in Java is a logical

entity only.

What is an object in Java
An entity that has state and behavior is known as an object e.g., chair, bike, marker, pen,

table, car, etc. It can be physical or logical (tangible and intangible). The example of an

intangible object is the banking system.

An object has three characteristics:

o State: represents the data (value) of an object.

o Behavior: represents the behavior (functionality) of an object such as deposit, withdraw,

etc.

o Identity: An object identity is typically implemented via a unique ID. The value of the ID

is not visible to the external user. However, it is used internally by the JVM to identify

each object uniquely.

For Example, Pen is an object. Its name is Reynolds; color is white, known as its state. It is used

to write, so writing is its behavior.

An object is an instance of a class. A class is a template or blueprint from which objects are

created. So, an object is the instance(result) of a class.

Object Definitions:

o An object is a real-world entity. o An object is a runtime entity. o The object is an entity

which has state and behavior. o The object is an instance of a class.

What is a class in Java
A class is a group of objects which have common properties. It is a template or blueprint from

which objects are created. It is a logical entity. It can't be physical.

A class in Java can contain:

o Fields

o Methods o

 Constructors o

 Blocks o Nested

class and interface

Syntax to declare a class:

1. class <class_name>{

2. field;

3. method;

4. }

Instance variable in Java
A variable which is created inside the class but outside the method is known as an instance

variable. Instance variable doesn't get memory at compile time. It gets memory at runtime

when an object or instance is created. That is why it is known as an instance variable.

Object and Class Example: main within the class

In this example, we have created a Student class which has two data members id and

name. We are creating the object of the Student class by new keyword and printing the

object's value.

Here, we are creating a main() method inside the class.

File: Student.java

1. //Java Program to illustrate how to define a class and fields

2. //Defining a Student class.

3. class Student{

4. //defining fields

5. int id;//field or data member or instance variable

6. String name;

7. //creating main method inside the Student class

8. public static void main(String args[]){

9. //Creating an object or instance

10. Student s1=new Student();//creating an object of Student

11. //Printing values of the object

12. System.out.println(s1.id);//accessing member through reference variable 13.

System.out.println(s1.name);

14. }

15. }

Test it Now Output:

0 null

3 Ways to initialize object
There are 3 ways to initialize object in Java.

1. By reference variable

2. By method

3. By constructor

1) Object and Class Example: Initialization through reference

Initializing an object means storing data into the object. Let's see a simple example where we

are going to initialize the object through a reference variable.

File: TestStudent2.java

1. class Student{

2. int id;

3. String name;

4. }

5. class TestStudent2{

6. public static void main(String args[]){

7. Student s1=new Student();

8. s1.id=101;

9. s1.name="Sonoo";

10. System.out.println(s1.id+" "+s1.name);//printing members with a white space

11. }

https://www.javatpoint.com/opr/test.jsp?filename=Student
https://www.javatpoint.com/opr/test.jsp?filename=Student
https://www.javatpoint.com/opr/test.jsp?filename=Student
https://www.javatpoint.com/opr/test.jsp?filename=Student

2) Object and Class Example: Initialization through method

In this example, we are creating the two objects of Student class and initializing the value

to these objects by invoking the insertRecord method. Here, we are displaying the state

(data) of the objects by invoking the displayInformation() method.

File: TestStudent4.java

1. class Student{

2. int rollno;

3. String name;

4. void insertRecord(int r, String n){

5. rollno=r;

6. name=n;

7. }

8. void displayInformation(){System.out.println(rollno+" "+name);} 9. }

10. class TestStudent4{

11. public static void main(String args[]){

12. Student s1=new Student();

13. Student s2=new Student();

14. s1.insertRecord(111,"Karan");

15. s2.insertRecord(222,"Aryan");

16. s1.displayInformation();

17. s2.displayInformation();

18. }

19. }

3) Object and Class Example: Initialization through a constructor

We will learn about constructors in Java later.

Object and Class Example: Employee

Let's see an example where we are maintaining records of employees.

File: TestEmployee.java

1. class Employee{

2. int id;

3. String name;

4. float salary;

5. void insert(int i, String n, float s) {

6. id=i;

7. name=n;

8. salary=s;

9. }

10. void display(){System.out.println(id+" "+name+" "+salary);} 11. }

12. public class TestEmployee {

13. public static void main(String[] args) {

14. Employee e1=new Employee();

15. Employee e2=new Employee();

16. Employee e3=new Employee();

17. e1.insert(101,"ajeet",45000);

18. e2.insert(102,"irfan",25000);

19. e3.insert(103,"nakul",55000);

20. e1.display();

21. e2.display();

22. e3.display();

23. }

24. }

Test it Now Output:

101 ajeet 45000.0
102 irfan 25000.0
103 nakul 55000.0

What are the different ways to create an object in Java?

There are many ways to create an object in java. They are:

o By new keyword o By newInstance() method o By clone()

method o By deserialization o By factory method etc.

We will learn these ways to create object later.

Anonymous object
Anonymous simply means nameless. An object which has no reference is known as an

anonymous object. It can be used at the time of object creation only.

https://www.javatpoint.com/opr/test.jsp?filename=TestEmployee
https://www.javatpoint.com/opr/test.jsp?filename=TestEmployee
https://www.javatpoint.com/opr/test.jsp?filename=TestEmployee
https://www.javatpoint.com/opr/test.jsp?filename=TestEmployee

If you have to use an object only once, an anonymous object is a good approach. For example:

1. new Calculation();//anonymous object Calling

method through a reference:

1. Calculation c=new Calculation();

2. c.fact(5);

Calling method through an anonymous object

1. new Calculation().fact(5);

Let's see the full example of an anonymous object in Java.

1. class Calculation{

2. void fact(int n){

3. int fact=1;

4. for(int i=1;i<=n;i++){

5. fact=fact*i;

6. }

7. System.out.println("factorial is "+fact);

8. }

9. public static void main(String args[]){

10. new Calculation().fact(5);//calling method with anonymous object

11. }

12. } Output:
Factorial is 120

 Constructors in Java
 constructor in Java is a special method that is used to initialize objects. The
constructor is called when an object of a class is created. It can be used to set
initial values for object attributes.
In Java, a constructor is a block of codes similar to the method. It is called when
an instance of the class is created. At the time of calling the constructor, memory
for the object is allocated in the memory. It is a special type of method which is
used to initialize the object. Every time an object is created using the new()
keyword, at least one constructor is called.
How Constructors are Different From Methods in Java?

• onstructors must have the same name as the class within which it is
defined while it is not necessary for the method in Java.

• Constructors do not return any type while method(s) have the return
type or void if does not return any value.

• Constructors are called only once at the time of Object creation while
method(s) can be called any number of times.

Now let us come up with the syntax for the constructor being invoked at the time
of object or instance creation.
class Geek

{

 // A Constructor new

Geek() {

 }

}

// We can create an object of the above class //

using the below statement. This statement //

calls above constructor.

Geek obj = new Geek();

The first line of a constructor is a call to super() or this(), (a call to a constructor of
a super-class or an overloaded constructor), if you don’t type in the call to super in
your constructor the compiler will provide you with a non-argument call to super at
the first line of your code, the super constructor must be called to create an object:
port java.io.*;

 class
Geeks {

 Geeks() { super(); }
 public static void main(String[] args) {
 Geeks geek = new Geeks();
 }
}

Need of Constructor

Constructors are used to assign values to the class variables at the time of object
creation, either explicitly done by the programmer or by Java itself (default
constructor).

When is a Constructor called?

Each time an object is created using a new() keyword, at least one constructor (it
could be the default constructor) is invoked to assign initial values to the data
members of the same class.

The rules for writing constructors are as follows:

• Constructor(s) of a class must have the same name as the class name
in which it resides.

• A constructor in Java can not be abstract, final, static, or Synchronized.

• Access modifiers can be used in constructor declaration to control its
access i.e which other class can call the constructor.

Types of Constructors in Java

Two types of constructors in java:

• No-argument constructor

• Parameterized Constructor

1. No-argument constructor: A constructor that has no parameter is known
as the default constructor. If we don’t define a constructor in a class, then
the compiler creates a default constructor(with no arguments) for the
class. And if we write a constructor with arguments or no arguments then
the compiler does not create a default constructor.

2. 2. Parameterized Constructor: A constructor that has parameters is known
as parameterized constructor. If we want to initialize fields of the class with
our own values, then use a parameterized constructor.

Example:
// Java Program to Illustrate Working of

// Parameterized Constructor

// Importing required inputoutput class import
java.io.*;

// Class 1 class
Geek {
 // data members of the class.
String name; int id;
 // Constructor would initialize data members
// With the values of passed arguments while
 // Object of that class created
 Geek(String name, int id)
 { this.name
= name; this.id
= id;
 }
}

// Class 2 class
GFG {
 // main driver method public static
void main(String[] args)
 {
 // This would invoke the parameterized constructor.
 Geek geek1 = new Geek("adam", 1);
 System.out.println("GeekName :" + geek1.name
 + " and GeekId :" + geek1.id);
}
}

Access specifies in java

Access specifiers define the visibility of the class. If no keyword is mentioned
then that is default access modifier. Four modifiers in Java include public, private,
protected and default.

There are 4 types of access variables in Java:

• Private.

• Public.

• Default.

• Protected.

Access Modifiers in Java

There are two types of modifiers in Java: access modifiers and non-access
modifiers.

The access modifier in Java specifies the accessibility or scope of a field, method,
constructor, or class. We can change the access level of fields, constructors,
methods, and class by applying the access modifier on it.

Types of Java access modifiers:

1. Private: The access level of a private modifier is only within the class. It

cannot be accessed from outside the class.

2. Default: The access level of a default modifier is only within the package. It

cannot be accessed from outside the package. If you do not specify any

access level, it will be the default.

3. Protected: The access level of a protected modifier is within the package

and outside the package through child class. If you do not make the child

class, it cannot be accessed from outside the package.

4. Public: The access level of a public modifier is everywhere. It can be accessed from

within the class, outside the class, within the package and outside the package.

There are many non-access modifiers, such as static, abstract, synchronized, native, volatile,

transient, etc. Here, we are going to learn the access modifiers only.

Example:

class A{ private int data=40; private void msg (){System.out.println("Hello

java");}

}

public class Simple{ public static

void main(String args[]){

 A obj=new A();

 System.out.println(obj.data);//Compile Time Error obj.msg();//Compile Time Error

 } }

Access Control

In Java, access modifiers are used to set the accessibility (visibility) of classes,
interfaces, variables, methods, constructors, data members, and the setter
methods. For example, class Animal {public void method1() {...} private void
method2() {...} }

Private: declarations are visible within the class

Default: declarations are visible only within the

Modifier: Description

Public: declarations are visible everywhere

USING JAVA OBJECTS
String builder and String buffer Definition in Java:

String builder in Java: Constructors, Methods, and Examples

Table of Contents:

I. Class Declaration of String Builder

II. Looking at the Constructors of String Builder in Java
III. Discussing Various Methods of String Builder in Java IV.

 Using the Methods of String Builder in Java

String Builder in Java is a class used to create a mutable, or in other words, a modifiable

succession of characters. Like String Buffer, the String Builder class is an alternative to

the Java Strings Class, as the Strings class provides an immutable succession of

characters. However, there is one significant difference between String Buffer and

String Builder, and it is that the latter is non-synchronized. It means that String Builder in

Java is a more suited choice while working with a single thread, as it will be quicker than

String Buffer.

I. Class Declaration of String Builder

The java.lang.String Builder class is a part of java.lang package and has the following

class declaration:

Public final class String Builder extends

 Object implements Serializable,

CharSequence

https://www.simplilearn.com/tutorials/java-tutorial/stringbuilder-in-java#class_declaration_of_stringbuilder
https://www.simplilearn.com/tutorials/java-tutorial/stringbuilder-in-java#class_declaration_of_stringbuilder
https://www.simplilearn.com/tutorials/java-tutorial/stringbuilder-in-java#class_declaration_of_stringbuilder
https://www.simplilearn.com/tutorials/java-tutorial/stringbuilder-in-java#looking_at_the_constructors_of_stringbuilder_in_java
https://www.simplilearn.com/tutorials/java-tutorial/stringbuilder-in-java#looking_at_the_constructors_of_stringbuilder_in_java
https://www.simplilearn.com/tutorials/java-tutorial/stringbuilder-in-java#looking_at_the_constructors_of_stringbuilder_in_java
https://www.simplilearn.com/tutorials/java-tutorial/stringbuilder-in-java#discussing_various_methods_of_stringbuilder_in_java
https://www.simplilearn.com/tutorials/java-tutorial/stringbuilder-in-java#discussing_various_methods_of_stringbuilder_in_java
https://www.simplilearn.com/tutorials/java-tutorial/stringbuilder-in-java#discussing_various_methods_of_stringbuilder_in_java
https://www.simplilearn.com/tutorials/java-tutorial/stringbuilder-in-java#using_the_methods_of_stringbuilder_in_java
https://www.simplilearn.com/tutorials/java-tutorial/stringbuilder-in-java#using_the_methods_of_stringbuilder_in_java
https://www.simplilearn.com/tutorials/java-tutorial/stringbuilder-in-java#using_the_methods_of_stringbuilder_in_java
https://www.simplilearn.com/tutorials/java-tutorial/java-classes-and-objects
https://www.simplilearn.com/tutorials/java-tutorial/java-classes-and-objects
https://www.simplilearn.com/tutorials/java-tutorial/java-classes-and-objects
https://www.simplilearn.com/tutorials/java-tutorial/java-classes-and-objects
https://www.simplilearn.com/tutorials/java-tutorial/java-classes-and-objects
https://www.simplilearn.com/tutorials/java-tutorial/java-strings
https://www.simplilearn.com/tutorials/java-tutorial/java-strings
https://www.simplilearn.com/tutorials/java-tutorial/java-strings
https://www.simplilearn.com/tutorials/java-tutorial/java-strings
https://www.simplilearn.com/tutorials/java-tutorial/java-strings
https://community.simplilearn.com/threads/difference-between-string-buffer-and-string-builde.3678/
https://community.simplilearn.com/threads/difference-between-string-buffer-and-string-builde.3678/
https://community.simplilearn.com/threads/difference-between-string-buffer-and-string-builde.3678/
https://community.simplilearn.com/threads/difference-between-string-buffer-and-string-builde.3678/
https://community.simplilearn.com/threads/difference-between-string-buffer-and-string-builde.3678/
https://community.simplilearn.com/threads/difference-between-string-buffer-and-string-builde.3678/
https://community.simplilearn.com/threads/difference-between-string-buffer-and-string-builde.3678/
https://community.simplilearn.com/threads/difference-between-string-buffer-and-string-builde.3678/
https://community.simplilearn.com/threads/difference-between-string-buffer-and-string-builde.3678/
https://community.simplilearn.com/threads/difference-between-string-buffer-and-string-builde.3678/
https://community.simplilearn.com/threads/difference-between-string-buffer-and-string-builde.3678/
https://community.simplilearn.com/threads/difference-between-string-buffer-and-string-builde.3678/
https://community.simplilearn.com/threads/difference-between-string-buffer-and-string-builde.3678/

II. Looking at the Constructors of String Builder in Java

Constructor Name Description

String Builder() It constructs a blank string builder

with a capacity of 16 characters

String Builder(int capacity) It creates an empty string builder

with the specified capacity

String Builder(CharSequence seq) It creates a string builder with the

same characters specified as the

argument

String Builder(String str) It will construct a string builder

with the string specified in the

argument

String Builder append (String s) This method appends the mentioned

string with the existing string. You

can also with arguments like

Boolean, char, int, double, float,

etc.

String Builder insert (int offset, String s) It will insert the mentioned string to

the other string from the specified

offset position. Like append, you

can overload this method with

arguments like (int, boolean), (int,

int), (int, char), (int, double), (int,

float), etc.

String Builder replace(int start, int end, String s) It will replace the original string

with the specified string from the

start index till the end index.

String Builder delete(int start, int end) This method will delete the string

from the mentioned start index till

the end index.

String Builder reverse() It will reverse the string.

int capacity() This will show the current String

Builder capacity.

void ensure Capacity(int min) This method ensures that the String

Builder capacity is at least equal to

the mentioned minimum.

char charAt(int index) It will return the character at the

specified index.

int length() This method is used to return the

length (total characters) of the

string.

String substring(int start) Starting from the specified index till

the end, this method will return the

substring.

String substring(int start, int end) It will return the substring from the

start index till the end index.

int indexOf(String str) This method will return the index

where the first instance of the

specified string occurs.

int lastIndexOf(String str) It will return the index where the

specified string occurs the last.

Void trimToSize() It will attempt to reduce the size of the

String Builder.

IV. Using the Methods of String Builder in Java

Let’s have a look at examples of some examples of the String Builder methods.

Example 1: Applying the Append () Method of String Builder in Java

Here, you must concatenate three strings using the append () method in the below example.

 Java String Buffer Class

Java String Buffer class is used to create mutable (modifiable) String objects. The String Buffer

class in Java is the same as String class except it is mutable i.e. it can be changed.

 Important Constructors of String Buffer Class

 Constructor Description

String Buffer() It creates an empty String buffer with the initial capacity of 16.

String Buffer(String str) It creates a String buffer with the specified string..

String Buffer(int capacity) It creates an empty String buffer with the specified capacity as length.

Modifier and
Type

Method Description

public

synchronized

String Buffer

append(String s) It is used to append the specified string with this string. The

append() method is overloaded like append(char),

append(boolean), append(int), append(float), append(double)

etc.

public

synchronized

String Buffer

insert(int offset, String s) It is used to insert the specified string with this string at the

specified position. The insert() method is overloaded like

insert(int, char), insert(int, boolean), insert(int, int), insert(int,

float), insert(int, double) etc.

public

synchronized

StringBuffer

replace(int startIndex, int

endIndex, String str)

It is used to replace the string from specified startIndex and

endIndex.

public

synchronized

StringBuffer

delete(int startIndex, int

endIndex)

It is used to delete the string from specified startIndex and

endIndex.

public

synchronized

StringBuffer

reverse() is used to reverse the string.

public int capacity() It is used to return the current capacity.

public void ensureCapacity(int

minimumCapacity)

It is used to ensure the capacity at least equal to the given

minimum.

public char charAt(int index) It is used to return the character at the specified position.

public int length() It is used to return the length of the string i.e. total number of

characters.

public String substring(int beginIndex) It is used to return the substring from the specified beginIndex.

public String substring(int beginIndex,

int endIndex)

It is used to return the substring from the specified beginIndex

and endIndex.

What is a mutable String?

A String that can be modified or changed is known as mutable String. StringBuffer and String

Builder classes are used for creating mutable strings.

1) String Buffer Class append () Method

The append () method concatenates the given argument with this String.

StringBufferExample.java

class String Buffer Example { public static void

main(String args[]){ StringBuffer sb=new StringBuffer

("Hello "); sb.append("Java");//now original string is

changed

System.out.println(sb);//prints Hello Java

}

}

Output:
Hello Java

METHODS AND MESSAGES IN JAVA

Method in Java:

 Method in Java or Java Method is a collection of statements that perform
some specific task and return the result to the caller. A Java method can perform
some specific task without returning anything. Methods in Java allow us to reuse
the code without retyping the code. In Java, every method must be part of some
class that is different from languages like C, C++, and Python.
1. A method is like function i.e. used to expose behaviour of an object.

2. it is a set of codes that perform a particular task.

Syntax: Declare a method

<access_modifier> <return_type> <method_name>(list_of_parameters)

{

 //body

}

Advantage of Method

• Code Reusability

• Code Optimization

Note: Methods are time savers and help us to reuse the code without retyping the
code.

Method Declaration

In general, method declarations have six components:

1. Modifier: It defines the access type of the method i.e. from where it can be
accessed in your application. In Java, there 4 types of access specifiers.
• Public: It is accessible in all classes in your application.

• protected: It is accessible within the class in which it is defined and in its
subclass/es

• private: It is accessible only within the class in which it is defined.

• default: It is declared/defined without using any modifier. It is accessible within
the same class and package within which its class is defined.

2. The return type: The data type of the value returned by the method or void if
does not return a value.
3. Method Name: the rules for field names apply to method names as well, but
the convention is a little different.
4. Parameter list: Comma-separated list of the input parameters is defined,
preceded with their data type, within the enclosed parenthesis. If there are no
parameters, you must use empty parentheses ().
5. Exception list: The exceptions you expect by the method can throw, you can
specify these exception(s).
6. Method body: it is enclosed between braces. The code you need to be
executed to perform your intended operations.

Types of Methods in Java

There are two types of methods in Java:

1. Predefined Method: In Java, predefined methods are the method that is
already defined in the Java class libraries is known as predefined methods. It is
also known as the standard library method or built-in method. We can directly use
these methods just by calling them in the program at any point.
2. User-defined Method: The method written by the user or programmer is
known as a user-defined method. These methods are modified according to the
requirement.

Method Signature

It consists of the method name and a parameter list (number of parameters, type
of the parameters, and order of the parameters). The return type and exceptions
are not considered as part of it.

Method Signature of the above function: max(int x, int y) Number of parameters
is 2, Type of parameter is int.

How to Name a Method?

A method name is typically a single word that should be a verb in lowercase or
multi-word, that begins with a verb in lowercase followed by an adjective,
noun….. After the first word, the first letter of each word should be capitalized.
Rules to Name a Method
• While defining a method, remember that the method name must be a verb

and start with a lowercase letter.
• If the method name has more than two words, the first name must be a

verb followed by an adjective or noun.

• In the multi-word method name, the first letter of each word must be in
uppercase except the first word. For example, findSum, computeMax,
setX and getX.

Generally, a method has a unique name within the class in which it is defined but
sometimes a method might have the same name as other method names within
the same class as method overloading is allowed in Java.

Method Calling
The method needs to be called for using its functionality. There can be three
situations when a method is called:
A method returns to the code that invoked it when:

• It completes all the statements in the method

• It reaches a return statement

• Throws an exception

Example:

 Java
// Java Program to Illustrate Methods

// Importing required classes

Import java.io.*;

// Class 1 // Helper

class

class Addition {

 // Initially taking sum as 0

 // as we have not started computation int

sum = 0;

 // Method

https://www.geeksforgeeks.org/overloading-in-java/
https://www.geeksforgeeks.org/overloading-in-java/
https://www.geeksforgeeks.org/overloading-in-java/
https://www.geeksforgeeks.org/overloading-in-java/
https://www.geeksforgeeks.org/overloading-in-java/
https://www.geeksforgeeks.org/overloading-in-java/
https://www.geeksforgeeks.org/overloading-in-java/
https://www.geeksforgeeks.org/overloading-in-java/
https://www.geeksforgeeks.org/overloading-in-java/
https://www.geeksforgeeks.org/overloading-in-java/
https://www.geeksforgeeks.org/overloading-in-java/
https://www.geeksforgeeks.org/overloading-in-java/
https://www.geeksforgeeks.org/overloading-in-java/
https://www.geeksforgeeks.org/overloading-in-java/
https://www.geeksforgeeks.org/overloading-in-java/

 // To add two numbers public int

addTwoInt(int a, int b) { //

Adding two integer value sum

= a + b;

 // Returning summation of two values return sum;

 }

}

 // Class 2 // Helper class class GFG

{ // Main driver method public static

void main(String[] args)

 {

 // Creating object of class 1 inside main() method

Addition add = new Addition();

 // Calling method of above class

 // to add two integer //

using instance created int s

= add.addTwoInt(1, 2);

 // Printing the sum of two numbers

 System.out.println("Sum of two integer values :" + s);

 }

}

Output

Sum of two integer values: 3

Message Passing in Java

What is message passing and why it is used?

Message Passing in terms of computers is communication between processes. It
is a form of communication used in object-oriented programming as well as
parallel programming. Message passing in Java is like sending an object i.e.
message from one thread to another thread. It is used when threads do not have
shared memory and are unable to share monitors or semaphores or any other
shared variables to communicate. Suppose we consider an example of producer
and consumer, likewise what producer will produce, the consumer will be able to
consume that only. We mostly use Queue to implement communication between
threads.

messages, 7 at a time and after that producer will wait for the consumer until the
queue is empty.

In the example explained below, we will be using vector (queue) to store the

https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://media.geeksforgeeks.org/wp-content/uploads/20190509121341/Message-Passing-in-Java.jp
https://media.geeksforgeeks.org/wp-content/uploads/20190509121341/Message-Passing-in-Java.jp
https://media.geeksforgeeks.org/wp-content/uploads/20190509121341/Message-Passing-in-Java.jp

In Producer there are two synchronized methods putMessage() which will call
form run() method of Producer and add message in Vector whereas
getMessage() extracts the message from the queue for the consumer. Using
message passing simplifies the producer-consumer problem as they don’t
have to reference each other directly but only communicate via a queue.

Example:

 import java.util.Vector; class

Producer extends Thread {

 // initialization of queue size static final

int MAX = 7; private Vector messages =

new Vector(); @Override

public void run()

 { try {

while (true) {

 // producing a message to send to the consumer putMessage();

 // producer goes to sleep when the queue is full sleep(1000);

 }

 }

 catch (InterruptedException e) {

 }

 }

https://www.geeksforgeeks.org/producer-consumer-solution-using-threads-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-threads-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-threads-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-threads-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-threads-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-threads-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-threads-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-threads-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-threads-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-threads-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-threads-java/
https://www.geeksforgeeks.org/producer-consumer-solution-using-threads-java/

 private synchronized void putMessage()

throws InterruptedException

 {

 // checks whether the queue is full or not while

(messages.size() == MAX)

 // waits for the queue to get empty

 wait();

 // then again adds element or messages

messages.addElement(new java.util.Date().toString());

 notify();

 }

 public synchronized String getMessage() throws

InterruptedException

 { notify(); while

(messages.size() == 0)

 wait();

 String message = (String)messages.firstElement();

 // extracts the message from the queue

messages.removeElement(message);

return message;

 }

}

class Consumer extends Thread {

 Producer producer;

 Consumer(Producer p)

 {

 producer = p;

 }

 @Override

public void run()

 { try {

while (true) {

 String message = producer.getMessage(); // sends

a reply to producer got a message System.out.println("Got

message: " + message); sleep(2000);

 }

 }

 catch (InterruptedException e) {

 }

 }

 public static void main(String args[])

 {

 Producer producer = new Producer();

producer.start(); new

Consumer(producer).start();

 }

}

Output:

Got message: Thu May 09 06:57:53 UTC 2019

Got message: Thu May 09 06:57:54 UTC 2019

Got message: Thu May 09 06:57:55 UTC 2019

Got message: Thu May 09 06:57:56 UTC 2019 Got
message: Thu May 09 06:57:57 UTC 2019

Got message: Thu May 09 06:57:58 UTC 2019 Got

message: Thu May 09 06:57:59 UTC 2019 Got

message: Thu May 09 06:58:00 UTC 2019

Passing and Returning Objects in Java

Although Java is strictly passed by value, the precise effect differs between
whethe a primitive typer or a reference type is passed. When we pass a
primitive type to a method, it is passed by value. But when we pass an object to a
method, the situation changes dramatically, because objects are passed by what
is effectively call-by-reference. Java does this interesting thing that’s sort of a
hybrid between pass-by-value and pass-by-reference.

https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/data-types-in-java/
https://www.geeksforgeeks.org/data-types-in-java/
https://www.geeksforgeeks.org/data-types-in-java/
https://www.geeksforgeeks.org/data-types-in-java/
https://www.geeksforgeeks.org/data-types-in-java/
https://www.geeksforgeeks.org/data-types-in-java/
https://www.geeksforgeeks.org/data-types-in-java/

Basically, a parameter cannot be changed by the function, but the function can
ask the parameter to change itself via calling some method within it.

• While creating a variable of a class type, we only create a reference to an
object. Thus, when we pass this reference to a method, the parameter that
receives it will refer to the same object as that referred to by the argument.

 This effectively means that objects act as if they are passed to methods
by use of call-by-reference.

• Changes to the object inside the method do reflect the object used as an
argument.

Illustration: Let us suppose three objects ‘ob1’ , ‘ob2’ and ‘ob3’ are

created:

ObjectPassDemo ob1 = new ObjectPassDemo(100, 22);

ObjectPassDemo ob2 = new ObjectPassDemo(100, 22);

ObjectPassDemo ob3 = new ObjectPassDemo(-1, -1);

From the method side, a reference of type Foo with a name a is declared and it’s
initially assigned to null.

boolean equalTo(ObjectPassDemo o);

As we call the method equalTo, the reference ‘o’ will be assigned to the object
which is passed as an argument, i.e. ‘o’ will refer to ‘ob2’ as the following
statement execute.

System.out.println("ob1 == ob2: " + ob1.equalTo(ob2));

Now as we can see, equalTo method is called on ‘ob1’ , and ‘o’ is referring to ‘ob2’.
Since values of ‘a’ and ‘b’ are same for both the references, so if(condition) is true,
so boolean true will be return. if(o.a == a && o.b == b)

Again ‘o’ will reassign to ‘ob3’ as the following statement execute.

System.out.println("ob1 == ob3: " + ob1.equalTo(ob3));

 Now as
we can
see, the
equalTo
method is
called on
‘ob1’ , and
‘o’ is
referring to
‘ob3’.
Since
values of
‘a’ and ‘b’
are not the
same for
both the

references, so if(condition) is false, so else block will execute, and false will be
returned. In Java we can pass objects to methods as one can perceive from the
below program as follows:

Example:

 Java
// Java Program to Demonstrate Objects Passing to Methods.

 // Class

// Helper class class ObjectPassDemo {

 int a, b;

 // Constructor

 ObjectPassDemo(int i, int j)

 { a

= i; b

= j;

 }

 // Method boolean

equalTo(ObjectPassDemo o)

 {

 // Returns true if o is equal to the invoking

 // object notice an object is passed as an

 // argument to method

return (o.a == a && o.b == b);

 }

}

// Main class public class GFG { //

MAin driver method public static

void main(String args[])

 {

 // Creating object of above class inside main()

 ObjectPassDemo ob1 = new ObjectPassDemo(100, 22);

 ObjectPassDemo ob2 = new ObjectPassDemo(100, 22);

 ObjectPassDemo ob3 = new ObjectPassDemo(-1, -1);

 // Checking whether object are equal as custom

 // values

 // above passed and printing corresponding boolean

 // value

 System.out.println("ob1 == ob2: "

 + ob1.equalTo(ob2));

 System.out.println("ob1 == ob3: "

 + ob1.equalTo(ob3));

 }

}

Output ob1 == ob2:

true ob1 == ob3:

false

Defining a constructor that takes an object of its class as a parameter

One of the most common uses of object parameters involves constructors.

Frequently, in practice, there is a need to construct a new object so that it is

initially the same as some existing object. To do this, either we can use

Object.clone() method or define a constructor that takes an object of its

class as a parameter. Example

 Java
// Java program to Demonstrate One Object to

// Initialize Another

// Class 1 class Box { double

width, height, depth; // Notice this

constructor. It takes an

 // object of type Box. This constructor use

 // one object to initialize another

https://www.geeksforgeeks.org/clone-method-in-java-2/
https://www.geeksforgeeks.org/clone-method-in-java-2/
https://www.geeksforgeeks.org/clone-method-in-java-2/
https://www.geeksforgeeks.org/clone-method-in-java-2/
https://www.geeksforgeeks.org/clone-method-in-java-2/

 Box(Box ob)

 {

 width = ob.width; height

 = ob.height; depth

= ob.depth;

 }

 // constructor used when all dimensions

 // specified

 Box(double w, double h, double d)

 { width

= w;

height = h;

depth = d;

 }

 // compute and return volume double

volume() { return width * height * depth; }

}

// MAin class public class GFG { //

Main driver method public static

void main(String args[])

 {

 // Creating a box with all dimensions specified

 Box mybox = new Box(10, 20, 15);

 // Creating a copy of mybox

 Box myclone = new Box(mybox);

 double vol;

 // Get volume of mybox vol =

mybox.volume();

 System.out.println("Volume of mybox is " + vol); // Get volume

of myclone vol = myclone.volume();

System.out.println("Volume of myclone is " + vol);

 }

}

Output

Volume of mybox is 3000.0

Volume of myclone is 3000.0

Returning Objects

In java, a method can return any type of data, including objects. For example,

in the following program, the incrByTen() method returns an object in which

the value of an (an integer variable) is ten greater than it is in the invoking

object. Example

 Java
// Java Program to Demonstrate Returning of Objects

 // Class 1 class

ObjectReturnDemo {

 int a;

 // Constructor

 ObjectReturnDemo(int i) { a = i; }

 // Method returns an object

 ObjectReturnDemo incrByTen()

 {

 ObjectReturnDemo temp =

 new ObjectReturnDemo(a + 10);

return temp;

 }

}

// Class 2 // Main class

public class

GFG {

 // Main driver method public static

void main(String args[])

 {

 // Creating object of class1 inside main() method

 ObjectReturnDemo ob1 = new ObjectReturnDemo(2);

 ObjectReturnDemo ob2;

 ob2 = ob1.incrByTen();

 System.out.println("ob1.a: " + ob1.a);

System.out.println("ob2.a: " + ob2.a);

 }

}

Output ob1.a:

2 ob2.a: 12

Note: When an object reference is passed to a method, the reference
itself is passed by use of call-by-value. However, since the value being

passed refers to an object, the copy of that value will still refer to the same
object that its corresponding argument does. That’s why we said that java
is strictly pass-by-value.

This article is contributed by Gaurav Miglani. If you like GeeksforGeeks and

would like to contribute, you can also write an article using

write.geeksforgeeks.org or mail your article to

reviewteam@geeksforgeeks.org. See your article appearing on the

GeeksforGeeks main page and help other Geeks. Please write comments if

you find anything incorrect, or you want to share more information about the

topic discussed above.

How to Compare Two Objects in Java
Java Object class is the super class of all the Java classes. All Java classes
implements the Object class by default. The Java Object class provides the two
important methods to compare two objects in Java,
i.e. equals() and hashCode() method. In this section, we will learn how
equals() and hashCode() method works. Along with this, we will also learn
how to compare two objects in Java with proper examples.

Java provides the two methods of the Object class to compare the objects are as
follows:

o Java equals() Method o Java

hashCode() Method

Java equals () Method
The equals() method of the Object class compare the equality of two objects. The
two objects will be equal if they share the same memory address.

Syntax:

1. public boolean equals(Object obj)

The method parses a reference object as a parameter. It returns true if the objects
are equal, else returns false.

It is also possible that an object is equal to another given object, then the equals()

method follow the equivalence relation to compare the objects. o Reflexive: If x is

https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://write.geeksforgeeks.org/
https://write.geeksforgeeks.org/
https://write.geeksforgeeks.org/
https://write.geeksforgeeks.org/
https://write.geeksforgeeks.org/
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java

a non-null reference, the calling of x.equals(x) must return true. o Symmetric: If the

two non-null references are x and y, x.equals(y) will return true if and only if

y.equals(x) return true. o Transitive: If the three non-null references are x, y, and z,

x.equals(z) will also return true if x.equals(y) and y.equals(z) both returns true. o

Consistent: If the two non-null references are x and y, the multiple calling of

x.equals(y) constantly returns either true or false. It does not provide any

information used in the comparison. o For any non-null reference x, x.equals(null)

returns false.

AD

In short, for any non-null reference say x and y, it returns true if and only if both
references refer to the same object.

Remember: When we override the equals() method, it is necessary to override the
hashCode() method. Overriding follow the convention for the hashCode() method
that states, the equal object must have equal hash code.

Example of equals() method
In the following example, we have created constructor of the Double and Long
class and passes corresponding values, as an argument that stored in their objects,
respectively.

After that, in the first println statement, we have invoked equals() method and parse
an object y as a parameter that compares the object x and y. It returns false
because x holds the double value and y holds the long value that is not equal.

Similarly, in the second println statement, we have invoked equals() method and
parse the same value as in the constructor of the Double class. It returns true
because the object of double class i.e. x holds the same value as we have passed in
the equals() method.

ObjectComparisonExample.java

public class ObjectComparisonExample

{

public static void main(String[] args)

{

//creating constructor of the Double class

Double x = new Double(123.45555);

//creating constructor of the Long class

Long y = new Long(9887544);

//invoking the equals() method

System.out.println("Objects are not equal, hence it returns " + x.equals(y));

https://www.javatpoint.com/java-constructor
https://www.javatpoint.com/java-constructor
https://www.javatpoint.com/java-constructor
https://www.javatpoint.com/java-constructor
https://www.javatpoint.com/java-constructor
https://www.javatpoint.com/java-long
https://www.javatpoint.com/java-long
https://www.javatpoint.com/java-long
https://www.javatpoint.com/java-long
https://www.javatpoint.com/java-long
https://www.javatpoint.com/java-long
https://www.javatpoint.com/java-long
https://www.javatpoint.com/java-double
https://www.javatpoint.com/java-double
https://www.javatpoint.com/java-double
https://www.javatpoint.com/java-double
https://www.javatpoint.com/java-double

System.out.println("Objects are equal, hence it returns " + x.equals(123.45555));

}

}

Output:

Objects are not equal, hence it returns false Objects are

equal, hence it returns true

Difference Between == Operator and equals() Method
In Java, the == operator compares that two references are identical or not.

Whereas the equals() method compares two objects.

Objects are equal when they have the same state (usually comparing variables).
Objects are identical when they share the class identity.

For example, the expression obj1==obj2 tests the identity, not equality. While the
expression obj1.equals(obj2) compares equality.

Java hashCode() Method
In Java, hash code is a 32-bit signed integer value. It is a unique id provided by JVM to

Java object. Each Java object is associated with the hash code. The hash code is managed

by a hash-based data structure, such as HashTable, HashSet, etc.

Remember: When we override the equals() method, it is necessary to override the hashCode()

method, also.

Syntax:

1. public int hashCode()

It returns a randomly generated hash code value of the object that is unique for each

instance. The randomly generated value might change during the several executions of

the program.

The general contract for hashCode is:

o When it is invoked more than once during the execution of an application, the hashCode()

method will consistently return the same hash code (integer value). Note that the object

should not be modified. o If the two objects are equal according to the equals() method,

then invoking the hashCode() method on these two objects must produce the same integer

value.

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/jvm-java-virtual-machine
https://www.javatpoint.com/jvm-java-virtual-machine
https://www.javatpoint.com/jvm-java-virtual-machine
https://www.javatpoint.com/jvm-java-virtual-machine
https://www.javatpoint.com/jvm-java-virtual-machine

o It is not necessary that if the two objects are unequal according to equals() method, then

invoking the hashCode() method on these two objects may produce distinct integer value.

It means that it can produce the same hash code for both objects.

Example of hashCode() method
In the following example, we have created two classes Employee.java and

HashCodeExample.java.
AD

In the Employee class, we have defined two fields regno of type int and name of type

String. After that, we have created a constructor of the Employee class and passes these

two fields as a parameter.

To perform the comparison of objects, we have created a separate class named

HashCodeExample. In this class, we have created two instances of the Employee class i.e.

emp1 and emp2. After that, we have invoked the hashCode() method using objects. We

have stored the hash code value in the variable a and b, respectively.

Employee.java

public class Employee

{

private int regno; private

String name;

//constructor of Employee class public Employee(int

regno, String name)

{

this.name = name; this.regno =

regno;

}

public int getRegno()

{

return regno;

}

public void setRegno(int Regno)

{

this.regno = regno;

}

public String getName()

{

return name;

}

public void setName(String name)

{

this.name = name;

}

}

HashCodeExample:

public class HashcodeExample

{

public static void main(String[] args)

{

//creating two instances of the Employee class

Employee emp1 = new Employee(918, "Maria"); Employee emp2

= new Employee(918, "Maria");
//invoking hashCode() method int

a=emp1.hashCode(); int

b=emp2.hashCode();

System.out.println("hashcode of emp1 = " + a);

System.out.println("hashcode of emp2 = " + b);

System.out.println("Comparing objects emp1 and emp2 = " + emp1.equals(emp2));

}

1. }

Output:

Overriding equals() Method
We can override the equals() method in the following way if we want to provide own

implementation.

//overriding equals() method

@Override public boolean

equals(Object obj)

{

if (obj == null)

return false; if (obj == this) return true; return

this.getRegno() == ((Employee) obj). getRegno(); }

hashcode of emp1 = 2398801145
hashcode of emp2 = 1852349007
Comparing objects emp 1 and emp2 = false
AD

The above code snippet shows that two employees will be equal if they are stored in the

same memory address or they have the same regno. When we run the program

(HashCodeExample.java) with the above code snippet, we get the following output.

Output:
hashcode of emp1 = 2032578917 hashcode

of emp2 = 1531485190
Comparing objects emp1 and emp2 = true

 INHERITANCE
Inheritance in Java

1. Inheritance

2. Types of Inheritance

3. Why multiple inheritance is not possible in Java in case of class?

Inheritance in Java is a mechanism in which one object acquires all the properties and
behaviors of a parent object. It is an important part of OOPs (Object Oriented
programming system).

The idea behind inheritance in Java is that you can create new classes that are
built upon existing classes. When you inherit from an existing class, you can reuse
methods and fields of the parent class. Moreover, you can add new methods and
fields in your current class also.

Inheritance represents the IS-A relationship which is also known as a parentchild
relationship.

Why use inheritance in java
o For Method Overriding (so runtime polymorphism can be achieved). o For

Code Reusability.

Terms used in Inheritance o Class: A class is a group of objects which have

common properties. It is a template or blueprint from which objects are created.

o Sub Class/Child Class: Subclass is a class which inherits the other class. It is

also called a derived class, extended class, or child class. o Super Class/Parent

Class: Superclass is the class from where a subclass inherits the features. It is

https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/inheritance-in-java#inheritancetypes
https://www.javatpoint.com/inheritance-in-java#inheritancetypes
https://www.javatpoint.com/inheritance-in-java#inheritancetypes
https://www.javatpoint.com/inheritance-in-java#inheritancetypes
https://www.javatpoint.com/inheritance-in-java#inheritancenotmultiple
https://www.javatpoint.com/inheritance-in-java#inheritancenotmultiple
https://www.javatpoint.com/inheritance-in-java#inheritancenotmultiple
https://www.javatpoint.com/inheritance-in-java#inheritancenotmultiple
https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/method-overriding-in-java
https://www.javatpoint.com/method-overriding-in-java
https://www.javatpoint.com/method-overriding-in-java
https://www.javatpoint.com/method-overriding-in-java
https://www.javatpoint.com/method-overriding-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java

also called a base class or a parent class. o Reusability: As the name specifies,

reusability is a mechanism which facilitates you to reuse the fields and methods

of the existing class when you create a new class. You can use the same fields

and methods already defined in the previous class.

AD

The syntax of Java Inheritance
class Subclass-name extends Superclass-name

{

 //methods and fields

}

The extends keyword indicates that you are making a new class that derives from
an existing class. The meaning of "extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called a parent or
superclass, and the new class is called child or subclass.

Java Inheritance Example

As displayed in the above figure, Programmer is the subclass and Employee is the
superclass. The relationship between the two classes is Programmer IS-A
Employee. It means that Programmer is a type of Employee.

1. class Employee{

2. float salary=40000;

3. }

4. class Programmer extends Employee{

5. int bonus=10000;

6. public static void main(String args[]){

7. Programmer p=new Programmer();

8. System.out.println("Programmer salary is:"+p.salary);

9. System.out.println("Bonus of Programmer is:"+p.bonus);

10. }

11. }

Test it Now

 Programmer salary is:40000.0

 Bonus of programmer is:10000

In the above example, Programmer object can access the field of own class as well
as of Employee class i.e. code reusability.

Types of inheritance in java

On the basis of class, there can be three types of inheritance in java: single,
multilevel and hierarchical.

In java programming, multiple and hybrid inheritance is supported through interface
only. We will learn about interfaces later.

Note: Multiple inheritance is not supported in Java through class.

https://www.javatpoint.com/opr/test.jsp?filename=Programmer
https://www.javatpoint.com/opr/test.jsp?filename=Programmer
https://www.javatpoint.com/opr/test.jsp?filename=Programmer
https://www.javatpoint.com/opr/test.jsp?filename=Programmer

When one class inherits multiple classes, it is known as multiple inheritance. For
Example:

Single Inheritance Example

When a class inherits another class, it is known as a single inheritance. In the
example given below, Dog class inherits the Animal class, so there is the single
inheritance.

File: TestInheritance.java

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class TestInheritance{ public static
void main(String args[]){ Dog d=new
Dog(); d.bark(); d.eat();

}

}

When there is a chain of inheritance, it is known as multilevel inheritance. As you
can see in the example given below, BabyDog class inherits the Dog class which
again inherits the Animal class, so there is a multilevel inheritance.

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class BabyDog extends Dog{

void weep(){System.out.println("weeping...");}

}

class TestInheritance2{

public static void main(String args[]){ BabyDog

d=new BabyDog();

d.weep();

d.bark();

d.eat();

}

When two or more classes inherits a single class, it is known as hierarchical
inheritance. In the example given below, Dog and Cat classes inherits the Animal
class, so there is hierarchical inheritance.

Multilevel Inheritance Example

Output:

barking...

eating...

}

Hierarchical Inheritance Example:

Output:

weeping...
barking...
eating...

AD

File: TestInheritance3.java

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class Cat extends Animal{

void meow(){System.out.println("meowing...");}

}

class TestInheritance3{

public static void main(String args[]){ Cat

c=new Cat(); c.meow();

c.eat();

//c.bark();//C.T.Error

}

}

Output:

meowing...
eating...

Q) Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritance is not
supported in java.

Consider a scenario where A, B, and C are three classes. The C class inherits A
and B classes. If A and B classes have the same method and you call it from child
class object, there will be ambiguity to call the method of A or B class.

Since compile-time errors are better than runtime errors, Java renders compiletime
error if you inherit 2 classes. So whether you have same method or different, there
will be compile time error.

AD class

A{

void msg(){System.out.println("Hello");}

}

class B{

void msg(){System.out.println("Welcome");}

}

class C extends A,B{//suppose if it were

 public static void main(String args[]){ C obj=new
C(); obj.msg();//Now which msg() method would be
invoked?

}

}

Polymorphism in Java
Polymorphism is the ability of an object to take on many forms. The most common use of

polymorphism in OOP occurs when a parent class reference is used to refer to a child class

object.

Any Java object that can pass more than one IS-A test is considered to be polymorphic. In Java,

all Java objects are polymorphic since any object will pass the IS-A test for their own type and

for the class Object.

It is important to know that the only possible way to access an object is through a reference

variable. A reference variable can be of only one type. Once declared, the type of a reference

variable cannot be changed.

The reference variable can be reassigned to other objects provided that it is not declared final.

The type of the reference variable would determine the methods that it can invoke on the object.

A reference variable can refer to any object of its declared type or any subtype of its declared

type. A reference variable can be declared as a class or interface type.

Example
Let us look at an example.

public interface Vegetarian{} public class
Animal{}
public class Deer extends Animal implements Vegetarian{}

Now, the Deer class is considered to be polymorphic since this has multiple inheritance.

Following are true for the above examples −

• A Deer IS-A Animal

• A Deer IS-A Vegetarian

• A Deer IS-A Deer

• A Deer IS-A Object

When we apply the reference variable facts to a Deer object reference, the following

declarations are legal −

Example
Deer d = new Deer();
Animal a = d;
Vegetarian v = d; Object
o = d;

All the reference variables d, a, v, o refer to the same Deer object in the heap.

Types of Polymorphism
Polymorphism in Java is divided into two types: compile time polymorphism and run

time polymorphism. Static polymorphisms and dynamic polymorphisms are terms

used to describe this type of java polymorphism.

1. Static polymorphism (or compile-time polymorphism)

Polymorphism in Java, like most other OOP programming languages, allows for the

inclusion of several methods within a single class. Although the methods have the

same name, the parameters differ. The static polymorphism is represented by this.

This polymorphism is achieved through method overloading and is resolved during the

compiler time. There are three conditions by which the parameter sets must differ:

The number of parameters should be varied.

Different parameter types should be used.

The parameters are in a different sequence. If one method accepts a string and a long

while the other accepts a long and a string, for example. This form of order, on the

other hand, makes it tough for the API to grasp.

Every method has a different signature due to the differences in parameters. The Java

compiler knows which method is invoked.

Example of static polymorphism

One of the ways by which Java supports static polymorphism is method overloading.

An example showing the case of method overloading in static polymorphism is shown

below:

Example:

class SimpleCalculator {

int add(int a, int

b)

{

return a+b; } int add(int

a, int b, int

c)

{

return a+b+c;

}

}

public class Demo

{

public static void main(String args[])

{

SimpleCalculator obj = new SimpleCalculator();

System.out.println(obj.add(25, 25));

System.out.println(obj.add(25, 25, 30));

}

}

Output of the program

50

80

2. Dynamic Polymorphism (or run time polymorphism in Java) The compiler does

not determine the method to be executed in this type of polymorphism in Java. The

process is carried out at runtime by the Java Virtual Machine (JVM). When a call to an

overridden process is resolved at run time, it is referred to as dynamic polymorphism.

The overridden method is called by a superclass's reference variable. While the

methods implemented by both the subclass and the superclass have the same name,

they provide separate functionality.

Before you can understand the concept of run time polymorphism, you must first

understand the process of upcasting. Upcasting is the process of referring to a child

class object with a reference variable from the superclass.

Example of Dynamic polymorphism (or run time)

Example1:

The classes Bike and Splendor are created, with the Splendor class extending Bike

and overriding its run() method. The parent class's reference variable invokes the run()

method. Because the subclass method is overriding the parent class method, it is

called at run time.

The program: class Bike{ void

run(){System.out.println(“running”);}

}

class Splendor extends Bike{ void

run(){System.out.println(“walking safely with 30km”);}

public static void main(String args[]){ Bike b = new

Splendor();//upcasting

b.run();

}

}

Output: walking safely with 60km

Method Overloading in Java
If a class has multiple methods having same name but different in parameters, it is known as

Method Overloading.

If we have to perform only one operation, having same name of the methods increases

the readability of the program.

Suppose you have to perform addition of the given numbers but there can be any

number of arguments, if you write the method such as a(int,int) for two parameters,

and b(int,int,int) for three parameters then it may be difficult for you as well as other

programmers to understand the behaviour of the method because its name differs.

So, we perform method overloading to figure out the program quickly.

Advantage of method overloading

Method overloading increases the readability of the program.

Different ways to overload the method
There are two ways to overload the method in java

1. By changing number of arguments

2. By changing the data type

In Java, Method Overloading is not possible by changing the return type of the method
only.

1) Method Overloading: changing no. of arguments
In this example, we have created two methods, first add() method performs addition

of two numbers and second add method performs addition of three numbers. In this

example, we are creating static methods so that we don't need to create instance for calling

methods.

1. class Adder{

2. static int add(int a,int b){return a+b;}

3. static int add(int a,int b,int c){return a+b+c;}

https://www.javatpoint.com/static-keyword-in-java
https://www.javatpoint.com/static-keyword-in-java
https://www.javatpoint.com/static-keyword-in-java
https://www.javatpoint.com/static-keyword-in-java
https://www.javatpoint.com/static-keyword-in-java
https://www.javatpoint.com/static-keyword-in-java
https://www.javatpoint.com/method-overloading-in-java
https://www.javatpoint.com/method-overloading-in-java
https://www.javatpoint.com/method-overloading-in-java
https://www.javatpoint.com/method-overloading-in-java
https://www.javatpoint.com/method-overloading-in-java
https://www.javatpoint.com/method-overloading-in-java

4. }

5. class TestOverloading1{

6. public static void main(String[] args){

7. System.out.println(Adder.add(11,11));

8. System.out.println(Adder.add(11,11,11));

9. }}

Output:
22
33

2) Method Overloading: changing data type of arguments
In this example, we have created two methods that differs in data type

. The first add method receives two integer arguments and second add method receives two

double arguments.

1. class Adder{

2. static int add(int a, int b){return a+b;}

3. static double add(double a, double b){return a+b;}

4. }

5. class TestOverloading2{

6. public static void main(String[] args){

7. System.out.println(Adder.add(11,11));

8. System.out.println(Adder.add(12.3,12.6));

9. }}

Output:
22
24.9

Runtime Polymorphism in Java
Runtime polymorphism or Dynamic Method Dispatch is a process in which a call to

an overridden method is resolved at runtime rather than compile-time.

In this process, an overridden method is called through the reference variable of a

superclass. The determination of the method to be called is based on the object being

referred to by the reference variable.

Let's first understand the upcasting before Runtime Polymorphism.

https://www.javatpoint.com/java-data-types
https://www.javatpoint.com/java-data-types
https://www.javatpoint.com/java-data-types
https://www.javatpoint.com/java-data-types
https://www.javatpoint.com/java-data-types
https://www.javatpoint.com/method-overloading-in-java
https://www.javatpoint.com/method-overloading-in-java
https://www.javatpoint.com/method-overloading-in-java
https://www.javatpoint.com/method-overloading-in-java
https://www.javatpoint.com/method-overloading-in-java
https://www.javatpoint.com/method-overloading-in-java

Example of Java Runtime Polymorphism

In this example, we are creating two classes Bike and Splendor. Splendor class extends

Bike class and overrides its run() method. We are calling the run method by the

reference variable of Parent class. Since it refers to the subclass object and subclass

method overrides the Parent class method, the subclass method is invoked at runtime.

Since method invocation is determined by the JVM not compiler, it is known as runtime

polymorphism.

1. class Bike{

2. void run(){System.out.println("running");}

3. }

4. class Splendor extends Bike{

5. void run(){System.out.println("running safely with 60km");}

6.

7. public static void main(String args[]){

8. Bike b = new Splendor();//upcasting

9. b.run();

10. }

11. } Output:

Running safely with 60km.

Method Overriding in Java
If subclass (child class) has the same method as declared in the parent class, it is known

as method overriding in Java.

In other words, If a subclass provides the specific implementation of the method that has

been declared by one of its parent class, it is known as method overriding.

Usage of Java Method Overriding
o Method overriding is used to provide the specific implementation of a method

which is already provided by its superclass. o Method overriding is used for runtime

polymorphism

Rules for Java Method Overriding
1. The method must have the same name as in the parent class 2. The method

must have the same parameter as in the parent class.

3. There must be an IS-A relationship (inheritance).

Example of method overriding
In this example, we have defined the run method in the subclass as defined in the

parent class but it has some specific implementation. The name and parameter of the

method are the same, and there is IS-A relationship between the classes, so there is

method overriding.

1. class Vehicle{

2. void run(){System.out.println("Vehicle is running");}

3. }

4. class Bike2 extends Vehicle{

5.

6. void run(){System.out.println("Bike is running safely");}

7.

8. public static void main(String args[]){

9. Bike2 obj = new Bike2();

10. obj.run();

11. }

12. } Output:

Bike is running safely

Packages: Putting Classes Together

A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined

package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

Here, we will have the detailed learning of creating and using user-defined packages.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be easily

maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

Simple example of java package
The package keyword is used to create a package in java.

1. package mypack;

2. public class Simple{

3. public static void main(String args[]){

4. System.out.println("Welcome to package");

5. }

6. }

API in Java
API in Java is delivered via Java Development Kit or JDK. JDK is made up of three entities.

1. Java compiler: A pre-quoted program used for breaking the complex user-written codes

into simple and computer-understandable codes, known as byte-code.

2. Java Virtual Machine (JVM): Allotted to process the byte code and generate an

easytounderstand output.

3. Java API: The pre-integrated software components used for establishing a

communication between desired software/platforms/components.

Java brings multiple pre-designed components into action for accomplishing the development

process. Its API connects to included components and enable programmers to use their

functionality so that they can make most of them.

Developers can refer to the classes and packages of available APIs and speed up the process of

explaining the classes and packages for the planned program.

Why use the Java APIs?

The Java APIs can be a valuable tool for developers. They let you access a wide variety of

thirdparty services with just a few lines of code, which can be helpful in solving problems or

building apps that are difficult to do without them.

Even if you have no plans to build your own apps, knowing how these APIs work likely will help

make your time as an app developer easier.

The Importance of Using APIs in Java
API is more than any other ordinary entity. It’s a way to make development smooth and enhance the

development experience. Here is what significance API holds in Java.

• API in Java makes key operational techniques and processes streamlined than ever. The

live example of this is The Develop Social Intelligent Inbox. By simply login on to this

platform, using Facebook and Twitter, allows one to pay attention to the messages, revert

to the tagged posts, and operate on the search items. As the platform is developed using

Java API, all these details are presented in a unified view saving time and effort.

• Use of API in Java grants access to a wide range of SQL support.

• Java API brings customization of high quality accessible for developers.

https://www.wallarm.com/what/what-is-api
https://www.wallarm.com/what/what-is-api
https://www.wallarm.com/what/what-is-api
https://www.wallarm.com/what/what-is-api
https://www.wallarm.com/what/what-is-api

The Java REST API work
REST API is one of the most widely used API in Java, along with Web API, Java Help,

Facebook.4J, and Twitter.4J. It makes code available and usable for every related

application/program. While one is using REST API in Java, the basic rules to be followed are:

• Stateless: REST follows client-server architecture to remain state-independent.

• Uniform interface: Applications using REST API in Java and beyond will be requiring the

undeviating client and server interface via HTTP and URIs

• Client-server: Client and servers, involved in the communication, are independent of

each other.

• Cache: Cache is an imperative part of REST API in Java as its presence makes

recording intermediate responses easier than ever.

• Layered: REST API features layered structure and each layer is independent.

•

Types of Java APIs
The five acceptable types of Java API are explained next:

1. Public Java APIs are often referred to as open Java API as they are part of JDK and don’t

need any extra payment. Also, they are free from the areas and use cases of their

implementation.

2. Private or internal Java API is designed by a particular developer/organization and is

accessible only to authorized professionals.

3. Partner Java APIs are the third-party APIs offered to businesses for specific operations.

4. Composite Java API is basically microservices developed using clubbing different kinds of

APIs.

5. Web Java API is accessed via HTTP protocol and is used to establish a communication

bridge for browser-based applications/services like web storage and web notifications.

https://www.wallarm.com/what/differences-soap-vs-rest#what_is_rest_
https://www.wallarm.com/what/differences-soap-vs-rest#what_is_rest_
https://www.wallarm.com/what/differences-soap-vs-rest#what_is_rest_

Java API example
APIs in Java can be custom as well as open-source packages. For the APIs your developer or a

service provider has created, you will have to learn relevant functions and get to know how to

fetch data or perform functions through it. However, Java’s own API have detailed descriptions

and guidance available on Oracle’s official website and throughout the internet.

Let’s take the example of JDBC API. It is the API that lets you access your project’s database and

fetch data using various legit queries. It has 2 packages, namely - java.sql and javax.sql.

To use the classes in these packages in your code, you must first import these in the beginning of

your file. For this, the code will be:

import java.sql.*

import javax.sql.*

If you want to use a few specific classes from any of these APIs, you can perform the import

using following function: import java.sql.Connection;

import java.sql.SQLException;

In above example, imported classes are SQLException and Connection. These both belong to

java.sql package of JDBC API.

Here is an example code that uses data received using the Java JDBC API:

public static void commit() {

Connection chk_con = this.get(); if

(chk_con != null) {

 try {

 chk_con.commit(); }

catch (SQLException e) {

e.printStackTrace();

 throw new RuntimeException("Transaction related exception occurred when tried to establish a connection…");

 }

 }

}

Advantages of API in Java
The direct impact of using API in Java is expedient the development as it makes pre-defined

classes and packages available for intended programs. However, that’s not the only advantage.

There are many more, such as:

• Java APIs keep human involvement as least as possible and empower computers so

much that they take care of the entire development job. Java API deploys automaton of

highest grade into action and makes crucial workflow quick and error-free.

• Service delivery is much more flexible with Java APIs as these APIs are available for

every component and lift all the data access restrictions. Additionally, the content or code

generated using Java API is set to be released and work. All the related channels are

allowed to access this freshly-generated content. This makes development quick from the

ground level.

• Java APIs exhibit unmatched integration abilities as they are ready-to-be-embedded in

any software/program/website. The high-end integration makes data fluid enough to be

used at any platform wherever enhanced user-experience goal fulfillment demands.

The Java API Standard Library
The Java API Standard Library is an important part of the Java language, and it’s one of the main

reasons why Java has become the most popular programming language. This library offers over

100 APIs that are used for everything from building apps to graphics to web services.

These APIs are designed to make your life as a developer easier. They provide access to

everything from mathematical functions (the Math class) to X-Ray technology (the X-Ray class).

Additionally, they offer ways in which you can integrate your app with other resources on your

computer or online, such as Google Maps or Twitter.

If you’re looking for a more advanced way to handle data storage, you can use the

ObjectInputStream class—or if you need help making your program work offline, you can use the

Service Locator interface. There are many different APIs in the Java API Standard Library that

allow developers to accomplish their goals in creative and efficient means.

Securing APIs in Java
APIs, lacking security, bear high risks for the developed applications. This is why developers are

allowed to adopt key API security practices without any compromise. There are several

frameworks for this job. For instance, if REST API is used in Java then Apache Shiro is a great

choice to make.

Using this framework, one can easily execute API token security of your choice. Java EE and

Spring offer a robust security framework for Java API. However, one has to make tedious efforts

to bring these frameworks into action to reap the benefits. This is why Wallarm is the most

preferred choice. It endows developers with tailored-made API security solutions that can protect

all sorts of Java API, regardless of the nature of OS.

https://www.wallarm.com/what/api-security-tutorial
https://www.wallarm.com/what/api-security-tutorial
https://www.wallarm.com/what/api-security-tutorial
https://www.wallarm.com/what/api-security-tutorial
https://www.wallarm.com/what/api-security-tutorial
https://www.wallarm.com/product/api-security-platform
https://www.wallarm.com/product/api-security-platform
https://www.wallarm.com/product/api-security-platform
https://www.wallarm.com/product/api-security-platform
https://www.wallarm.com/product/api-security-platform

Java Naming Convention
Java naming convention is a rule to follow as you decide what to name your identifiers

such as class, package, variable, constant, method, etc.

But, it is not forced to follow. So, it is known as convention not rule. These conventions

are suggested by several Java communities such as Sun Microsystems and Netscape.

All the classes, interfaces, packages, methods and fields of Java programming language

are given according to the Java naming convention. If you fail to follow these

conventions, it may generate confusion or erroneous code.

Advantage of Naming Conventions in Java
By using standard Java naming conventions, you make your code easier to read for

yourself and other programmers. Readability of Java program is very important. It

indicates that less time is spent to figure out what the code does.

CamelCase in Java naming conventions
Java follows camel-case syntax for naming the class, interface, method, and variable.

If the name is combined with two words, the second word will start with uppercase letter

always such as actionPerformed(), firstName, ActionEvent, ActionListener, etc.

Creating a Package

To create a package, you choose a name for the package (naming

conventions are discussed in the next section) and put a package

statement with that name at the top of every source file that contains

the types (classes, interfaces, enumerations, and annotation types)

that you want to include in the package.

The package statement (for example, package graphics;) must be the

first line in the source file. There can be only one package statement

in each source file, and it applies to all types in the file.

If you put the graphics interface and classes listed in the preceding

section in a package called graphics, you would need six source files,

like this:

//in the Draggable.java file package

graphics; public

interface Draggable {

 . . .

}

//in the Graphic.java file package

graphics; public abstract class

Graphic {

 . . .

}

//in the Circle.java file package
graphics;
public class Circle extends Graphic

 implements Draggable {

 . . .

}

//in the Rectangle.java file package
graphics;
public class Rectangle extends Graphic

implements Draggable {

 . . . }

//in the Point.java file package graphics;

 public class Point

extends Graphic

 implements Draggable {

 . . .

}

//in the Line.java file package

graphics; public class Line

extends Graphic

 implements Draggable {

 . . .

}

If you do not use a package statement, your type ends up in an

unnamed package. Generally speaking, an unnamed package is only

for small or temporary applications or when you are just beginning

the development process. Otherwise, classes and interfaces belong in

named packages.

Accessing a Package
A public class—whether it is within a package or not—is available to any
other class. If you omit the class’s access modifier entirely, the class has
default access and is only available to other classes within its package.
This kind of class is said to have package access.

A default access modified class can only be accessed within its package. This class
cannot be accessed outside the package.

Package access is more restricted than protected access and gives you more
control when defining classes. You can use package access in situations
where you have a package of cooperating classes that act as a single
encapsulated unit. When you control the package directory, you control who
is allowed to access the package. This is also referred to as default package
access modifier.

Here is an illustration of the various kinds of access:

Adding Classes to Packages

In order to put add Java classes to packages, you must do two things:

1. Put the Java source file inside a directory matching the Java package

you want to put the class in.

2. Declare that class as part of the package.

Putting the Java source file inside a directory structure that matches the

package structure, is pretty straightforward. Just create a source root

directory, and inside that, create directories for each package and

subpackage recursively. Put the class files into the directory matching the

package you want to add it to.

When you have put your Java source file into the correct directory (matching

the package the class should belong to), you have to declare inside that class

file, that it belongs to that Java package. Here is how you declare the

package inside a Java source file:

package com.jenkov.navigation;
public class Page
{ ... }

What Is a Hidden Class?

Hidden classes are classes that cannot be used directly by the bytecode
or other classes. Even though it's mentioned as a class, it should be
understood to mean either a hidden class or interface. It can also be
defined as a member of the access control nest and can be unloaded
independently of other classes.

Properties of Hidden Classes
Let's take a look at the properties of these dynamically generated classes:

• Non-discoverable – a hidden class is not discoverable by the JVM
during bytecode linkage, nor by programs making explicit use of
class loaders. The reflective methods Class::forName,
ClassLoader::findLoadedClass, and Lookup::findClass will not find
them.

• We can't use the hidden class as a superclass, field type, return
type, or parameter type.

• Code in the hidden class can use it directly, without relying on the
class object.

• final fields declared in hidden classes are not modifiable regardless
of their accessible flags.

• It extends the access control nest with non-discoverable classes.

• It may be unloaded even though its notional defining class loader is
still reachable.

• Stack traces don't show the methods or names of hidden classes by
default, however, tweaking JVM options can show them.

Creating Hidden Classes
The hidden class isn't created by any class loader. It has the same
defining class loader, runtime package, and protection domain of the
lookup class.

First, let's create a Lookup object:

MethodHandles.Lookup lookup = MethodHandles.lookup();Copy

The Lookup::defineHiddenClass method creates the hidden class. This
method accepts an array of bytes.
For simplicity, we'll define a simple class with the name HiddenClass that
has a method to convert a given string to uppercase:
public class HiddenClass {
 public String convertToUpperCase(String s) {
 return s.toUpperCase();
 }

}Copy

https://openjdk.java.net/jeps/181
https://openjdk.java.net/jeps/181
https://openjdk.java.net/jeps/181
https://openjdk.java.net/jeps/181
https://openjdk.java.net/jeps/181

Let's get the path of the class and load it into the input stream. After that,
we'll convert this class into bytes using IOUtils.toByteArray():
Class<?> clazz = HiddenClass.class;
String className = clazz.getName();
String classAsPath = className.replace('.', '/') + ".class";
InputStream stream = clazz.getClassLoader()
.getResourceAsStream(classAsPath); byte []

bytes = IOUtils.toByteArray();Copy

Lastly, we
pass these
constructed

bytes into Lookup::defineHiddenClass:

 true, ClassOption.NESTMATE).lookupClass();Copy

The second boolean argument true initializes the class. The third
argument ClassOption.NESTMATE specifies that the created hidden class
will be added as a nestmate to the lookup class so that it has access to the
private members of all classes and interfaces in the same nest.

Suppose we want to bind the hidden class strongly with its class loader,
ClassOption.STRONG. This means that the hidden class can only be
unloaded if its defining loader is not reachable.

Using Hidden Classes
Hidden classes are used by frameworks that generate classes at runtime
and use them indirectly via reflection.

In the previous section, we looked at creating a hidden class. In this
section, we'll see how to use it and create an instance.

Since casting the classes obtained from Lookup.defineHiddenClass is not
possible with any other class object, we use Object to store the hidden
class instance. If we wish to cast the hidden class, we can define an
interface and create a hidden class that implements the interface:

Object hiddenClassObject = hiddenClass.getConstructor().newInstance();Copy

Now, let's get the method from the hidden class. After getting the method,
we'll invoke it as any other standard method:
Method method = hiddenClassObject.getClass()
 .getDeclaredMethod("convertToUpperCase", String.class);

Assertions.assertEquals("HELLO", method.invoke(hiddenClassObject, "Hello"));CopyCopy

Now, we can verify a few properties of a hidden class by invoking some of
its methods:

The method isHidden() will return true for this class:

Assertions.assertEquals(true, hiddenClass.isHidden());Copy

Also, since there's no actual name for a hidden class, its canonical name
will be null:

Class<?> hiddenClass = lookup.defineHiddenClass(IOUtils.toByteArray(stream),

Assertions.assertEquals(null, hiddenClass.getCanonicalName());Copy

The hidden class will have the same defining loader as the class that does
the lookup. Since the lookup happens in the same class, the following
assertion will be successful:
Assertions.assertEquals(this.getClass()

 .getClassLoader(), hiddenClass.getClassLoader());Copy

If we try to access the hidden class through any methods, they'll throw
ClassNotFoundException. This is obvious, as the hidden class name is
sufficiently unusual and unqualified to be visible to other classes. Let's
check a couple of assertions to prove that the hidden class is not
discoverable:
Assertions.assertThrows(ClassNotFoundException.class, () ->

Class.forName(hiddenClass.getName()));
Assertions.assertThrows(ClassNotFoundException.class, () ->
lookup.findClass(hiddenClass.getName()));

Java Static Import
The static import feature of Java 5 facilitate the java programmer to access any static

member of a class directly. There is no need to qualify it by the class name.

Advantage of static import:

o Less coding is required if you have access any static member of a class oftenly.

Disadvantage of static import:

o If you overuse the static import feature, it makes the program unreadable and

unmaintainable.

Simple Example of static import

1. import static java.lang.System.*;

2. class StaticImportExample{

3. public static void main(String args[]){

4. out.println("Hello");//Now no need of System.out

5. out.println("Java");

6. }

7. }

JAVA FILES AND I/O

What is a stream?

• What is a Stream and what are the types of Streams and classes in Java?

Java provides I/O Streams to read and write data where, a Stream represents an

input source or an output destination which could be a file, I/o devise, other

program etc. In general, a Stream will be an input stream or, an output stream.

Introduced in Java 8, the Stream API is used to process collections of objects. A

stream is a sequence of objects that supports various methods which can be

pipelined to produce the desired result. The features of Java stream are –

• A stream is not a data structure instead it takes input from the

Collections, Arrays or I/O channels. Streams don’t change the original

data structure, they only provide the result as per the pipelined methods.

• Each intermediate operation is lazily executed and returns a stream as a

result, hence various intermediate operations can be pipelined. Terminal

operations mark the end of the stream and return the result. Different

Operations On Streams- Intermediate Operations:

1. map: The map method is used to returns a stream consisting of the

results of applying the given function to the elements of this stream.
List number = Arrays.asList(2,3,4,5);
List square =

number.stream().map(x>x*x).collect(Collectors.toList());

2. filter: The filter method is used to select elements as per the Predicate

passed as argument.
List names = Arrays.asList("Reflection","Collection","Stream");
List result = names.stream().filter(s-

>s.startsWith("S")).collect(Collectors.toList()); 3. sorted:

The sorted method is used to sort the stream.
List names = Arrays.asList("Reflection","Collection","Stream"); List

result = names.stream().sorted().collect(Collectors.toList()); Terminal
Operations:

1. collect: The collect method is used to return the result of the

intermediate operations performed on the stream.
List number = Arrays.asList(2,3,4,5,3);
Set square =

number.stream().map(x>x*x).collect(Collectors.toSet());

2. forEach: The forEach method is used to iterate through every element

of the stream.
List number = Arrays.asList(2,3,4,5); number.stream().map(x-

>x*x).forEach(y->System.out.println(y));

3. reduce: The reduce method is used to reduce the elements of a stream to

a single value.

The reduce method takes a BinaryOperator as a parameter.
List number = Arrays.asList(2,3,4,5); int even

=
number.stream().filter(x>x%2==0).reduce(0

,(ans,i)-> ans+i);
Here ans variable is assigned 0 as the initial value and i is added to it .

Program to demonstrate the use of Stream
//a simple program to demonstrate the use of stream in java

import java.util.*; import java.util.stream.*; class Demo

{ public static void main(String args[])

 {

 // create a list of integers

 List<Integer> number = Arrays.asList(2,3,4,5);

 // demonstration of map method

 List<Integer> square = number.stream().map(x -> x*x).

collect(Collectors.toList());

 System.out.println(square);

 // create a list of String

 List<String> names =

 Arrays.asList("Reflection","Collection","Stream");

 // demonstration of filter method

 List<String> result = names.stream().filter(s->s.startsWith("S")).

collect(Collectors.toList());

 System.out.println(result);

 // demonstration of sorted method List<String> show =

names.stream().sorted().collect(Collectors.toList());

System.out.println(show);

 // create a list of integers

 List<Integer> numbers = Arrays.asList(2,3,4,5,2);

 // collect method returns a set Set<Integer> squareSet =

numbers.stream().map(x->x*x).collect(Collectors.toSet());

System.out.println(squareSet);

 // demonstration of forEach method number.stream().map(x-

>x*x).forEach(y->System.out.println(y));

 // demonstration of reduce method int even = number.stream().filter(x-

>x%2==0).reduce(0,(ans,i)-> ans+i); System.out.println(even);

 }

}

Output:

[4, 9, 16, 25] [Stream] [Collection, Reflection, Stream]

[16, 4, 9, 25]

4

9

16

25

6

Important Points/Observations:

1. A stream consists of source followed by zero or more intermediate

methods combined together (pipelined) and a terminal method to

process the objects obtained from the source as per the methods

described.

2. Stream is used to compute elements as per the pipelined methods

without altering the original value of the object.

Reading and writing to files (only txt files)
When programming, whether you're creating a mobile app, a web

application, or just writing scripts, you often have the need to read or write

data to a file. This data could be cache data, data you retrieved for a

dataset, an image, or just about anything else you can think of.

In this tutorial, we are going to show the most common ways you can read

and write to files in Java.

Java provides several API (also known as Java I/O) to read and write files

since its initial releases. With subsequent releases, Java I/O has been

improved, simplified and enhanced to support new features.

Before we get in to some actual examples, it would help to understand the

classes available to you that will handle the reading and writing of data to

files. In the following sections we'll provide a brief overview of the Java I/O

classes and explain what they do, then we'll take a look at Java NIO

Streams, and finally we'll show some examples of reading and writing

data to files.

I/O Streams

There are two types of Streams you can use to interact with files:

1. Character Streams

2. Byte Streams

https://docs.oracle.com/javase/tutorial/essential/io/
https://docs.oracle.com/javase/tutorial/essential/io/
https://docs.oracle.com/javase/tutorial/essential/io/
https://docs.oracle.com/javase/tutorial/essential/io/
https://docs.oracle.com/javase/tutorial/essential/io/
https://docs.oracle.com/javase/tutorial/essential/io/
https://docs.oracle.com/javase/tutorial/essential/io/

For each of the above stream types, there are several supporting classes shipped

with Java, which we'll take a quick look at below.

Character Streams

Character Streams are used to read or write the characters data type. Let's look at
the most commonly used classes. All of these classes are defined under java.io
package.

Here are some classes you should know that can be used to read

character data:

 Reader : An abstract class to read a character stream.

 InputStreamReader : Class used to read the byte stream and converts to character

 FileReader: A class to read the characters from a file.

 BufferedReader : This is a wrapper over the Reader class that

supports buffering capabilities. In

many cases this is most preferable class to read data because more data read() can

been read from the file in one call, reducing the number of actual I/O operations

with file system.

And here are some classes you can use to write character data to a file:

 Writer : This is an abstract class to write the character streams.

 OutputStreamWriter: This class is used to write character streams and also convert

them to byte streams.

 FileWriter: A class to actually write characters to the file.

 BufferedWriter : This is a wrapper over the Writer class, which also supports

buffering capabilities. This is

most preferable class to write data to a file since more data can be written to the file

in

one write() call. And like the BufferedReader , this reduces the number of total I/O

operations with file system.
Byte Streams

https://docs.oracle.com/javase/8/docs/api/java/io/Reader.html
https://docs.oracle.com/javase/8/docs/api/java/io/Reader.html
https://docs.oracle.com/javase/8/docs/api/java/io/Reader.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStreamReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/FileReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/FileReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/FileReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/FileReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/8/docs/api/java/io/Writer.html
https://docs.oracle.com/javase/8/docs/api/java/io/Writer.html
https://docs.oracle.com/javase/8/docs/api/java/io/Writer.html
https://docs.oracle.com/javase/8/docs/api/java/io/OutputStreamWriter.html
https://docs.oracle.com/javase/8/docs/api/java/io/OutputStreamWriter.html
https://docs.oracle.com/javase/8/docs/api/java/io/OutputStreamWriter.html
https://docs.oracle.com/javase/8/docs/api/java/io/FileWriter.html
https://docs.oracle.com/javase/8/docs/api/java/io/FileWriter.html
https://docs.oracle.com/javase/8/docs/api/java/io/FileWriter.html
https://docs.oracle.com/javase/8/docs/api/java/io/FileWriter.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedWriter.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedWriter.html

Byte Streams are used to read or write byte data with files. This is different from

before in the way they treat the data. Here you work with raw bytes, which could be

characters, image data, unicode data (which takes 2 bytes to represent a

character), etc.

In this section we'll take a look at the most commonly used classes. All of these

classes are defined under java.io package.

Here are the classes used to read the byte data:

InputStream : An abstract class to read the byte streams.

An input/output device, often known as an IO device, is any hardware that
allows a human operator or other systems to interface with a

https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html

 FileInputStream : A class to simply read bytes from a file.

https://docs.oracle.com/javase/8/docs/api/java/io/FileInputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/FileInputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/FileInputStream.html

 BufferedInputStream : This is a wrapper over InputStream that aw in

 supports buffering cap the character this is a more efficient m streams,

 FileInputStream . And here

are the classes used to write the byte data:

 OutputStream : An abstract class to write byte streams.

 FileOutputStream : A class to write raw bytes to the file.

 ByteOutputStream : This class is a wrapper over OutputStream to

 capabilities. And again, as we saw in

ams, this is a more efficient FileOutputStream method

to the buffering.

Java NIO Streams

https://docs.oracle.com/javase/8/docs/api/java/io/BufferedInputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedInputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedInputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/OutputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/OutputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/OutputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/FileOutputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/FileOutputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/FileOutputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedOutputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedOutputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedOutputStream.html

Java NIO is a non-blocking I/O API which was introduced back in Java 4 be found

https://docs.oracle.com/javase/8/docs/api/java/nio/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/nio/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/nio/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/nio/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/nio/package-summary.html

in the java.nio package. In terms of performance, this is a vement in the API for I/O

operations.

Selectors, and Channels are the three primary components of

, although in this article we'll focus strictly on using the NIO or interacting with

files, and not necessarily the concepts behind

torial is about reading and writing files, we will discuss only the

asses in this short section:

 Path : This is a hierarchical structure of an actual file location and is ally used to

locate the file you want to interact with.

 Paths : This is a class that provides several utility methods to create a Path from a

given string URI.

 Files: This is another utility class which has several methods to read and write

files without blocking the execution on threads. Input and Output
systems

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Paths.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Paths.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Paths.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Paths.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html

computer. Input/output devices, as the name implies, are capable of
delivering data (output) to and receiving data from a computer (input). An
input/output (I/O) device is a piece of hardware that can take, output, or
process data. It receives data as input and provides it to a computer, as
well as sends computer data to storage media as a storage output.

There are many IO Devices available, some of them are:

Input Devices

Keyboard

The keyboard is the most frequent and widely used input device for
entering data into a computer. Although there are some additional keys
for performing other operations, the keyboard layout is similar to that of a
typical typewriter.

Generally, keyboards come in two sizes: 84 keys or 101/102 keys, but
currently keyboards with 104 keys or 108 keys are also available for

Windows and the Internet.

Types of Keys

• Numeric Keys: It is used to enter numeric data or move the
cursor. It usually consists of a set of 17 keys.

• Typing Keys: The letter keys (A-Z) and number keys (09) are
among these keys.

• Control Keys: These keys control the pointer and the screen.
There are four directional arrow keys on it. Home, End, Insert,
Alternate(Alt), Delete, Control(Ctrl), etc., and Escape are all
control keys (Esc).

 • Special Keys: Enter, Shift, Caps Lock, NumLk, Tab, etc., and
Print Screen are among the special function keys on the
keyboard.

• Function Keys: The 12 keys from F1 to F12 on the topmost
row of the keyboard.

Mouse

The most common pointing device is the mouse. The mouse is used to
move a little cursor across the screen while clicking and dragging. The
cursor will stop if you let go of the mouse. The computer is dependent on
you to move the mouse; it won’t move by itself. As a result, it’s an input
device.

A mouse is an input device that lets you move the mouse on a flat
surface to control the coordinates and movement of the on-screen
cursor/pointer.

The left mouse button can be used to select or move items, while the right
mouse button when clicked displays extra menus.

Joystick

A joystick is a pointing device that is used to move the cursor on a
computer screen. A spherical ball is attached to both the bottom and top
ends of the stick. In a socket, the lower spherical ball slides. You can
move the joystick in all four directions.

format that may be saved on a disc. Before they are printed, these

images can be modified.

OCR

OCR stands for optical character recognition, and it is a device that reads

printed text. OCR optically scans the text, character by character, turns it into

a machine-readable code, and saves it to the system memory.

Bar Code Reader

A bar code reader is a device that reads data that is bar-coded (data that is

represented by light and dark lines).

Bar-coded data is commonly used to mark things, number books, and so on. It

could be a handheld scanner or part of a stationary scanner. A bar code

reader scans a bar code image, converts it to an alphanumeric value, and

then sends it to the computer to which it is connected.

Monitor

Monitors, also known as Visual Display Units (VDUs), are a computer’s

primary output device. It creates images by arranging small dots, known as

pixels, in a rectangular pattern. The amount of pixels determines the image’s

sharpness.

The two kinds of viewing screen used for monitors are:

(1) Cathode-Ray Tube (CRT): Pixels are minuscule visual elements that

make up a CRT display. The higher the image quality or resolution, the smaller

the pixels.

(2) Flat-Panel Display Cathode-Ray Tube Monitor: In comparison to the

CRT, a flat-panel display is a type of video display with less volume, weight,

and power consumption. They can be hung on the wall or worn on the wrist.

Flat-panel displays are currently used in calculators, video games, monitors,

laptop computers, and graphical displays.

Printer

Printers are output devices that allow you to print information on paper.

• Exceptionally low consumable cost.

• Quite noisy

• Because of its low cost, it is ideal for large-scale printing.

• To create an image, there is physical contact with the paper.

(b) N on-Impact Printers:

Char acters are printed without the need for a ribbon in non-impact
print ers. Because these printers print a full page at a time, they’re also

know n as Page Printers. The following are the characteristics of

noni mpact printers:

 Faster

 They don’t make a lot of noise.

 Excellent quality

 Supports a variety of typefaces and character sizes

There are two types of printers:

 (a) Impact Printer:

Characters are printed on the ribbon, which is subsequently crushed against

the paper, in impact printers. The following are the characteristics of impact

printers:

Manipulating Input data

Data manipulation is the method of organizing data to make it easier to read or more designed

or structured. For instance, a collection of any kind of data could be organized in alphabetical

order so that it can be understood easily. On the other hand, it can be difficult to find information

about any particular employee in an organization if all the employees' information is not

organized. Therefore, all the employee's information could be organized in alphabetical order

that makes it easier to find information easily of any individual employee. Data manipulation

helps website owners to monitor their sources of traffic and their most popular pages. Hence, it

is frequently used on web server logs.

Data manipulation is also used by accounting users or similar fields to organized data in order

to figure out product costs, future tax obligations, pricing patterns, etc. It also helps the stock

market predictors to forecast developments and predicts how stocks might perform in the

adjacent future. Furthermore, data manipulation may also use by computers to display

information to users in a more realistic way on the basis of web pages, the code in a software

program, or data formatting.

The DML is used to manipulate data, which is a programming language. It short for Data

Manipulation Language that helps to modify data like adding, removing, and altering databases.

It means that changing the information in a way that can be read easily.

Objective of Data Manipulation

Data manipulation is a key feature for business operations and optimization. You need to deal

with data in a proper manner and manipulate it into meaningful information like doing trend

analysis, financial data, and consumer behaviour. Data manipulation offers an organization

multiple advantages; some are discussed below:

o Consistent data: Data manipulation provides a way to organize your data inconsistent

format that makes it structured, which can be read easily and better understood. When you

are collecting data from different-different sources, you may not have a unified view; but

data manipulation provides you surety that the data is well-organized, structured, and stored

consistently.

o Project data: Especially when it comes to finances, data manipulation is more useful as it

helps to provide more in-depth analysis by using historical data to project the future.

o Delete or neglect redundant data: Data manipulation helps to maintain your data and

delete unusable data that is always present. o Overall, with the data, you can do many

operations such as edit, delete, update, convert, and incorporate data into a database. It

helps to create more value from the data. If you do not know how to use data in an effective

manner, it becomes pointless. Therefore, it will be beneficial to make better business

decisions when you are able to organize your data accordingly.

Steps involved in Data Manipulation

Below there are some important steps given that may help you out to get started with data

manipulation.

1. First of all, data manipulation is possible only if you have data. Therefore, you are required

to create a database that is generated from data sources.

2. This knowledge needs restructuring and reorganization, which could be done with data

manipulation that helps you to cleanse your information.

3. Then, you need to import a database and create it to get start work with data.

4. With the help of data manipulation, you can edit, delete, merge, or combine your

information.

5. Finally, data analysis becomes easier at the time of manipulating data.

Opening and Closing Stream

Opening data streams is similar to opening files. You can open a stream by using

the AVIFileGetStream function. This function creates a stream interface, places a

handle of the stream in the interface, and returns a pointer to the interface.

AVIFileGetStream also maintains a reference count of the applications that have

opened a stream, but not of those that have closed it.

If you want to access a single stream in a file, you can open the file and the stream by

using the AVIStreamOpenFromFile function. This function combines the operations and

function arguments of the AVIFileOpen and AVIFileGetStream functions.

To access more than one stream in a file, use AVIFileOpen once followed by multiple calls

to AVIFileGetStream.

You can increment the reference count of a stream by using the

AVIStreamAddRef function to keep a stream open when using a function that would

normally close the stream.

You can close a stream by using the AVIStreamRelease function. This function

decrements the reference count of the stream and closes it when the reference

count reaches zero. Your applications should balance the reference count by

including a call to AVIStreamRelease for each use of the AVIFileGetStream,

AVIFileCreateStream, AVIStreamAddRef, or AVIStreamOpenFromFile function.

When you release a stream that has been opened by using

AVIStreamOpenFromFile, AVIFile closes the file containing the stream. If your

application releases a file that has open data streams, AVIFile will not close the streams

until all of the streams are released.

Predefined streams

System class from java.lang package contains three predefined stream

variables:

1. in

2. out

3. err

These fields are declared as public, static, and final within System.

System.out refers to the standard output stream. By default, this is the

console.

https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifilegetstream
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifilegetstream
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifilegetstream
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifilegetstream
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifilegetstream
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avistreamopenfromfilea
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avistreamopenfromfilea
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avistreamopenfromfilea
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avistreamopenfromfilea
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avistreamopenfromfilea
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifileopen
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifileopen
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifileopen
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifileopen
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifileopen
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avistreamaddref
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avistreamaddref
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avistreamaddref
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avistreamaddref
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avistreamrelease
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avistreamrelease
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avistreamrelease
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avistreamrelease
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avistreamrelease
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifilegetstream
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifilegetstream
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifilegetstream
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifilegetstream
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifilecreatestream
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifilecreatestream
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifilecreatestream
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifilecreatestream
https://learn.microsoft.com/en-us/windows/desktop/api/Vfw/nf-vfw-avifilecreatestream

System.in refers to standard input, which is the keyboard by default.

System.err refers to the standard error stream, which also is the

console by default.

However, these streams may be redirected to any compatible I/O

device.

System.in is an object of type InputStream

System.out and System.err are objects of type PrintStream.

These are byte streams, even though they are typically used to read

and write characters from and to the console.

You can wrap these within character-based streams. The

preceding chapters have been using System.out in their

examples.

You can use System.eerr in much the same way.

As you know, all Java programs automatically import the java.lang

package. This package defines a class called System, which

encapsulates several aspects of the run-time environment. Among
other things, it contains three predefined stream variables, called in,

out, and err. These fields are declared as public, final, and static

within System. This means that they can be used by any other part

of your program and without reference to a specific System object.

System. out refers to the standard output stream. By default, this is

the console. System.in refers to standard input, which is by default

the keyboard. System. err refers to the standard error stream,

which is also the console by default. However, these streams can be

File handling Classes and Methods
In Java, with the help of File Class, we can work with files. This File

Class is inside the java.io package. The File class can be used by

creating an object of the class and then specifying the name of the file.

Why File Handling is Required?

• File Handling is an integral part of any programming language

as file handling enables us to store the output of any particular

program in a file and allows us to perform certain operations on

it.

• In simple words, file handling means reading and writing data to

a file.

In Java, the concept Stream is used in order to perform I/O operations
on a file. So at first, let us get acquainted with a concept known as
Stream in Java.

Streams in Java

 • In Java, a sequence of data is known as a stream.

• This concept is used to perform I/O operations on a file.

• There are two types of streams :

1. Input Stream:

The Java InputStream class is the superclass of all input streams. The
input stream is used to read data from numerous input devices like the
keyboard, network, etc. InputStream is an abstract class, and because of
this, it is not useful by itself. However, its subclasses are used to read
data.

There are several subclasses of the InputStream class, which are as
follows:

1. AudioInputStream

2. ByteArrayInputStream

3. FileInputStream

4. FilterInputStream

5. StringBufferInputStream

6. ObjectInputStream

Creating an InputStream
// Creating an

 Java

// Importing File Class import

java.io.File;
 class

GFG {

 public static void main(String[] args)
{

 // File name specified
 File obj = new File("myfile.txt") ;
 System.out.println("File
Created!") ; } }

Output
File Created!

2. Output Stream:

The output stream is used to write data to numerous output devices like
the monitor, file, etc. OutputStream is an abstract superclass that
represents an output stream. OutputStream is an abstract class and
because of this, it is not useful by itself. However, its subclasses are
used to write data.

There are several subclasses of the OutputStream class which are as
follows:

1. ByteArrayOutputStream

2. FileOutputStream

3. StringBufferOutputStream

4. ObjectOutputStream

5. DataOutputStream

6. PrintStream

Creating an OutputStream
// Creating an

Based on the data type, there are two types of streams : 1. Byte

Stream:

This stream is used to read or write byte data. The byte stream is again
subdivided into two types which are as follows:

• Byte Input Stream: Used to read byte data from different
devices.

• Byte Output Stream: Used to write byte data to different
devices.

2. Character Stream:

This stream is used to read or write character data. Character stream is
again subdivided into 2 types which are as follows:

• Character Input Stream: Used to read character data from
different devices.

• Character Output Stream: Used to write character data to
different devices.

Owing to the fact that you know what a stream is, let’s polish up File
Handling in Java by further understanding the various methods that are
useful for performing operations on the files like creating, reading, and
writing files.

Exception handling Exception

Overview
An exception is an event, which occurs during the execution of a program, that disrupts the
normal flow of the program’s instructions. Instead of executing the next instruction in the
sequence, the control is transferred to the Java Virtual Machine (JVM) which tries to find an
appropriate exception handler in the program and transfer control to it (hence disrupting the
normal program flow).

This diagram illustrates the class hierarchy of the Throwable class and its most significant
subclasses.

Exceptions can be

• Checked Exceptions (direct subclasses of Exception or Custom exceptions that extend

Exception class)
• Unchecked Exceptions or RuntimeException(direct subclasses of RuntimeException or

Custom exceptions that extend RuntimeException class)

Checked Exceptions

• Checked exceptions represent an exceptional condition that is usually recoverable
• Direct subclasses of Exception or Custom exceptions that extend Exception class

In these scenarios, your Java application is trying to connect or use outside program/
software/resource. The complier makes sure that once your java application is done using the
outside resource, the resource is released gracefully with out any errors. So, it is mandatory to
handle these errors. The compiler always complains if you don’t. It says “OK, if you do not
handle, then I won’t create class files for your application”. Handling checked exceptions are
mandatory. Examples:

• Either use direct sub classes of Exception class. Below are few listed examples o

IOException signals that an I/O exception of some sort has occurred. This class is the

general class of exceptions produced by failed or interrupted I/O operations. o

 FileNotFoundException indicates when a referenced file is not found on the file system
 o SQLException provides information on a database access error or other errors

• OR define a custom class that extends Exception class o Ex: public class

MovieNotFoundException extends Exception

As you can see in above examples, IOException, FileNotFoundException, SQLException etc are
exceptions thrown when your Java application is trying to connect with outside resource like
accessing input output device or accessing file system or accessing database.

Exception Keywords
Java provides try, catch, finally, throw, throws keywords to dealing with exceptions. trycatch,

finally are used for handle exceptions. ‘throw‘ is used to throw our own exception. ‘throws‘ is

used to declare an exception.

Keyword Description

try We have to place risky code inside “try” block and the corresponding handling code inside
catch block. (The code which may cause an exception is called risky code)

https://vidvaan.com/java-try-catch-block/
https://vidvaan.com/java-try-catch-block/
https://vidvaan.com/java-try-catch-block/
https://vidvaan.com/java-try-catch-block/
https://vidvaan.com/java-try-catch-block/
https://vidvaan.com/java-try-catch-block/
https://vidvaan.com/java-finally-block/
https://vidvaan.com/java-finally-block/
https://vidvaan.com/java-finally-block/
https://vidvaan.com/java-finally-block/
https://vidvaan.com/java-throws-keyword/
https://vidvaan.com/java-throws-keyword/
https://vidvaan.com/java-throws-keyword/
https://vidvaan.com/java-throws-keyword/
https://vidvaan.com/java-throws-keyword/
https://vidvaan.com/java-throws-keyword/
https://vidvaan.com/java-throws-keyword/
https://vidvaan.com/java-throws-keyword/

catch

The “catch” block is used to handle the exception which is raised in try block. It should be
preceded by try block which means we can’t use catch block alone without try block. It can
be followed by finally block later.

finally

A finally block contains all the crucial statements that must be executed whether exception
occurs or not. Crucial statements could be closing a connection, stream, file etc. (‘cleanup’
or ‘resource releasing’ code).

throw The “throw” keyword is used to throw an exception by developer when business rules of an
application is violated.

throws

The “throws” keyword is used to declare exceptions as part of method signature. It
doesn’t really throw an exception. It just specifies that, method body code may raise an
execution in its execution.

Catching Exceptions
This section describes how to use the three exception handler components — the

try, catch, and finally blocks — to write an exception handler. Then, the

trywithresources statement, introduced in Java SE 7, is explained. The try-with-

resources statement is particularly suited to situations that use Closeable resources,

such as streams.

The last part of this section walks through an example and analyzes what occurs

during various scenarios.

The following example defines and implements a class named ListOfNumbers. When

constructed, ListOfNumbers creates an ArrayList that contains 10 Integer elements with

sequential values 0 through 9. The ListOfNumbers class also defines a method named

writeList(), which writes the list of numbers into a text file called OutFile.txt. This

example uses output classes defined in java.io, which are covered in the Basic I/O

section.

// Note: This class will not compile yet.

import java.io.*; import java.util.List; import

java.util.ArrayList;

public class ListOfNumbers {

 private List<Integer> list; private

static final int SIZE = 10;

 public ListOfNumbers () { list

= new ArrayList<>(SIZE); for

(int i = 0; i < SIZE; i++) {

list.add(i);

 }

 }

 public void writeList() {

 // The FileWriter constructor throws IOException, which must be caught.

 PrintWriter out = new PrintWriter(new FileWriter("OutFile.txt"));

 for (int i = 0; i < SIZE; i++) {

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/Closeable.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/Closeable.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/Closeable.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/Closeable.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/Closeable.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Integer.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Integer.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Integer.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Integer.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Integer.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/package-summary.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/package-summary.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/package-summary.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/package-summary.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/package-summary.html

 // The get(int) method throws IndexOutOfBoundsException, which must be

caught.

 out. println("Value at: " + i + " = " + list. get (i));

 }

out.close ();

 }

}

 Copy

The first line in boldface is a call to a constructor. The constructor initializes an

output stream on a file. If the file cannot be opened, the constructor throws an

IOException. The second boldface line is a call to the ArrayList class's get method,

which throws an IndexOutOfBoundsException if the value of its argument is too small

(less than 0) or too large (more than the number of elements currently contained by

the ArrayList.

If you try to compile the ListOfNumbers class, the compiler prints an error message

about the exception thrown by the FileWriter constructor. However, it does not display

an error message about the exception thrown by get(). The reason is that the

exception thrown by the constructor, IOException, is a checked exception, and the one

thrown by the get() method, IndexOutOfBoundsException, is an unchecked exception.

Now that you're familiar with the ListOfNumbers class and where the exceptions can

be thrown within it, you're ready to write exception handlers to catch and handle

those exceptions.

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/IOException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/IOException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/IOException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/IOException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/IOException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/IndexOutOfBoundsException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/IndexOutOfBoundsException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/IndexOutOfBoundsException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/IndexOutOfBoundsException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/IndexOutOfBoundsException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/FilterWriter.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/FilterWriter.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/FilterWriter.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/FilterWriter.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/FilterWriter.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/IOException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/IOException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/IOException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/IOException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/io/IOException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/IndexOutOfBoundsException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/IndexOutOfBoundsException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/IndexOutOfBoundsException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/IndexOutOfBoundsException.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/IndexOutOfBoundsException.html

 known as an Exception. Java Exception Handling is an object-oriented

way to handle exceptions. When an error occurs during the execution of
the program, an exception object is created which contains the
information about the hierarchy of the Exception and other information
which is essential for debugging. Types of Exceptions:

• Checked Exceptions

• Unchecked Exceptions

// Java program to demonstrate Arithmetic Exception

class GFG {
 public static void main(String[] args)
 {
 // Number of chocolates in each box
 int chocolates[] = { 106, 145, 123, 127, 125 };

 // Number of students in class
int students[] = { 35, 40, 0, 34, 60 };

 // Number of chocolates given to each student of a
 // particular class
 int numChoc[] = new int[5]; try
{
 for (int i = 0; i < 5; i++) {
 // Calculating the chocolates
 // to be distributed
 numChoc[i] = chocolates[i] / students[i];
 }
}
 // Catching Divide by Zero Exception catch
(ArithmeticException error) {
 System.out.println("Arithmetic Exception");
 System.out.println(error.getMessage()
 + " error.");
 }
}

}

Output

Arithmetic Exception /

by zero error.

Example 2:

Java has a robust Error Handling Mechanism that lets us handle
multiple Exceptions in one try block using different catch blocks. Catch
blocks in java are like if-else statements that will become active when
an exception occurs. When an exception occurs, the program compares
the exception object generated to the exception specified in the catch
blocks. The program checks the first catch block then moves on to other
and so-on until the generated exception is matched. If no catch block is
matched, the program halts, and an exception is thrown at the console.

After an Exception is generated in the try block, the control immediately
shifts to the catch block, and try block will no longer execute. Tinker with
the below code by changing the sizes of the array or changing a
particular element in the array2 to zero or initializing the answer array, to
get a better understanding of Java Exception Handling.

Below code illustrates how various types of errors can be handled in a
single try block.

 Java

// Java Program to Handle Various Exceptions

class GFG {
 public static void main(String[] args)
 {
 // Array1 Elements
 int[] array1 = { 2, 4, 6, 7, 8 };
 // Array2 Elements
 int[] array2 = { 1, 2, 3, 4, 5 };
// Initialized to null value
int[] ans = null;
try {
 for (int i = 0; i < 5; i++) {
 ans[i] = array1[i] / array2[i];
 // Generates Number Format Exception
 Integer.parseInt("Geeks for Geeks");

 }
 }
 catch (ArithmeticException error) {
 System.out.println(
 "The catch block with Arithmetic Exception is executed");
 }
 catch (NullPointerException error) {
 System.out.println(
 "The catch block with Null Pointer Exception is executed");
 }
 catch (ArrayIndexOutOfBoundsException error) {
 System.out.println(
 "The catch block with Array Index Out Of Bounds Exception is executed");
 }
 catch (NumberFormatException error) {
 System.out.println(
 "The catch block with Number Format Exception is executed");
 }
 // Executes when an exception which
// is not specified above occurs catch
(Exception error) {
 System.out.println(
 "An unknown exception is found "
 + error.getMessage());
 }

 // Executes after the catch block
 System.out.println("End of program");
 }
}

Output

The catch block with Null Pointer Exception is executed

End of program

Declaring Exceptions

Exception Handling in Java is one of the effective means to handle the

runtime errors so that the regular flow of the application can be preserved.

Java Exception Handling is a mechanism to handle runtime errors such

as ClassNotFoundException, IO Exception, SQL Exception, Remote

Exception, etc.

Exception is an unwanted or unexpected event, which occurs during the
execution of a program, i.e. at run time, that disrupts the normal flow of
the program’s instructions. Exceptions can be caught and handled by the
program. When an exception occurs within a method, it

creates an object. This object is called the exception object. It contains
information about the exception, such as the name and description of the
exception and the state of the program when the exception occurred.

Major reasons why an exception Occurs

 • Invalid user input

• Device failure

• Loss of network connection

• Physical limitations (out of disk memory)

• Code errors

• Opening an unavailable file

Errors represent irrecoverable conditions such as Java virtual machine
(JVM) running out of memory, memory leaks, stack overflow errors, library
incompatibility, infinite recursion, etc. Errors are usually beyond the control
of the programmer, and we should not try to handle errors. Let us discuss
the most important part which is the differences between Error and
Exception that is as follows:

• Error: An Error indicates a serious problem that a reasonable
application should not try to catch.

• Exception: Exception indicates conditions that a reasonable
application might try to catch.

Exception Hierarchy

All exception and error types are subclasses of class Throwable, which

is the base class of the hierarchy. One branch is headed by Exception.

This class is used for exceptional conditions that user programs should

catch. Null Pointer Exception is an example of such an exception. Another

branch, Error is used by the Java run-time system(JVM) to indicate errors

having to do with the run-time environment itself(JRE).

Stack Over flow Error is an example of such an error.

https://www.geeksforgeeks.org/jvm-works-jvm-architecture/
https://www.geeksforgeeks.org/jvm-works-jvm-architecture/
https://www.geeksforgeeks.org/jvm-works-jvm-architecture/

Types of Exceptions

Java defines several types of exceptions that relate to its various class

libraries. Java also allows users to define their own exceptions.

Exceptions can be categorized in two ways:

 1. Built-in Exceptions

• Checked Exception

• Unchecked Exception 2. User-

Defined Exceptions

Let us discuss the above-defined listed exception that is as follows:

A. Built-in Exceptions:

Built-in exceptions are the exceptions that are available in Java libraries.

These exceptions are suitable to explain certain error situations.

 Checked Exceptions: Checked exceptions are called
compiletime exceptions because these exceptions are checked

at compile-time by the compiler.

Unchecked Exceptions: The unchecked exceptions are just
opposite to the checked exceptions. The compiler will not check
these exceptions at compile time. In simple words, if a program
throws an unchecked exception, and even if we didn’t handle or
declare it, the program would not give a compilation error.

Note: For checked vs unchecked exception, see Checked vs Unchecked

Exceptions

B. User-Defined Exceptions:

Sometimes, the built-in exceptions in Java are not able to describe a
certain situation. In such cases, users can also create exceptions, which
are called ‘user-defined Exceptions’.

The advantages of Exception Handling in Java are as follows:

1. Provision to Complete Program Execution

2. Easy Identification of Program Code and Error-Handling Code

3. Propagation of Errors

4. Meaningful Error Reporting

5. Identifying Error Types

Methods to print the Exception information:

1.printStackTrace()– This method prints exception information in the

format of Name of the exception: description of the exception, stack

trace.

 Java
//program to print the exception information using printStackTrace() method

import java.io.*;

https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/
https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/

class GFG { public static
void main

(String[]

args) {

int a=5;

int b=0;

try{

 System.out.println(a/b);

 }

 catch(ArithmeticException e){

 e.printStackTrace();

 }

 }

}

Output:

java.lang.ArithmeticException: / by zero at GFG.main(File.java:10)

2.toString() – This method prints exception information in the format of

Name of the exception: description of the exception.

 Java

//program to print the exception information using toString() method

import java.io.*;

class GFG1 { public static void main

(String[] args) { int a=5; int b=0; try{

 System.out.println(a/b);

 }

 catch(ArithmeticException e){

 System.out.println(e.toString());

 }

 } }

Output:

java.lang.ArithmeticException: / by zero

3.getMessage() -This method prints only the description of the

exception.

 Java
program to print the exception information using getMessage() method //

import java.io.*;

class GFG1 { public static void main

(String[] args) {

 int a= 5 ;

int b= 0 ;

try {

 System.out.println(a/b);

 }

 catch (ArithmeticException e){

 System.out.println(e.getMessage());

 }

 }

}

Output:

/ by zero

Defining and throwing exceptions
In Java, an exception is an event that disrupts the normal flow of the program. It is an

object which is thrown at runtime. Exception Handling in Java is one of the powerful

mechanisms to handle runtime errors so that the normal flow of the application can be

maintained. We can use different ways to handle java exceptions. One of the ways is to

use the java throw exception handling method. In this tutorial, we will learn about the

java throw exception and the throws keyword to handle java exceptions.

First, we will discuss different types of java exceptions including checked and unchecked

exceptions. We will also look at some of the built-in exceptions that are common and can

occur frequently in the java program. At the same time, we will take various different

types of java exceptions and will handle them using the throws keyword and java throw

exception method.

To summarize, this tutorial will contain all the details and necessary examples that you

need to know in order to start working and handling java exceptions using the java throw

exception method.

Getting started with Java throw exception
The exception refers to some unexpected or contradictory situation or an error that is

unexpected. There may be some situations that occur during program development.

These are the situations where the code-fragment does not work right. There are

different ways to handle the exceptions. For example, using try and catch block or using

java throw exception method.

You can read more about the try and catch method from the article on try catch java. In

this tutorial, we will learn about java throw exceptions, but first, let us have a look at

some of the built-in java exceptions and different types of exceptions. Generally, java

exceptions are divided into two different types including checked, and unchecked

exceptions. Let us first differentiate between these two different types.

Checked exceptions in Java
It is actually a compile-time exception that occurs when the java compiler checks or

notifies during the compilation time. That is why they occur during the compile time. The

https://www.golinuxcloud.com/try-catch-java-examples/
https://www.golinuxcloud.com/try-catch-java-examples/
https://www.golinuxcloud.com/try-catch-java-examples/
https://www.golinuxcloud.com/try-catch-java-examples/
https://www.golinuxcloud.com/try-catch-java-examples/

compiler checks the checked exceptions during compilation to check whether the

programmer has written the code to handle them or not.

We cannot simply ignore these exceptions and should handle them properly in order to

run our program without any exceptions. If we will not write the code to handle them then

there will be a compilation error that is why a method that throws a checked exception

needs to either specify or handle it. Some of the common checked exceptions are

SQLException, ClassNotFoundException, FileNotFoundException, IOException, etc.

For example, See the java program below which raise an exception because the file that

we want to open does not exist.

// importing file

import java.io.File;

// importing filereader to read file

import java.io.FileReader;

// java main class

public class Main{ //

java main method

 public static void main(String args[]){

 // creating new file typed object and opening the file

 File file = new File("file.txt");

 // reading file

 FileReader fileReader = new FileReader(file);

 }

}
Output:

Errors and runtime Exception

In java, both Errors and Exceptions are the subclasses of java. lang.
Throwable class . E rro r r efers to an illegal operation performed by the user
which results in the abnormal working of the program. Programming errors
often remain undetected until the program is compiled or executed. Some of
the errors inhibit the program from getting compiled or executed. Thus errors
shoul d be removed before compiling and executing. It is of three types:
 • Compile-time

• Run-time
• Logical

Wherea s i n j av a e xception s r efer to an unwanted or unexpected event, which

occurs during the execution of a program i.e at run time, that disrupts the

normal flow of the program’s instructio ns.

Now let us discuss various types of errors in order to get a better

understanding over arrays. As discussed in the header an error indicates

serious problems that a reasonable application should not try to catch. Errors

are conditions that cannot get recovered by any handling techniques. It surely

causes termination of the program abnormally. Errors belong to unchecked

https://www.geeksforgeeks.org/types-of-errors-in-java-with-examples/
https://www.geeksforgeeks.org/types-of-errors-in-java-with-examples/
https://www.geeksforgeeks.org/types-of-errors-in-java-with-examples/
https://www.geeksforgeeks.org/types-of-errors-in-java-with-examples/
https://www.geeksforgeeks.org/types-of-errors-in-java-with-examples/
https://www.geeksforgeeks.org/types-of-errors-in-java-with-examples/
https://www.geeksforgeeks.org/types-of-errors-in-java-with-examples/
https://www.geeksforgeeks.org/exceptions-in-java/
https://www.geeksforgeeks.org/exceptions-in-java/
https://www.geeksforgeeks.org/exceptions-in-java/
https://www.geeksforgeeks.org/exceptions-in-java/
https://www.geeksforgeeks.org/exceptions-in-java/
https://www.geeksforgeeks.org/exceptions-in-java/
https://www.geeksforgeeks.org/exceptions-in-java/
https://www.geeksforgeeks.org/exceptions-in-java/
https://www.geeksforgeeks.org/exceptions-in-java/
https://www.geeksforgeeks.org/exceptions-in-java/
https://www.geeksforgeeks.org/exceptions-in-java/
https://www.geeksforgeeks.org/exceptions-in-java/
https://www.geeksforgeeks.org/exceptions-in-java/
https://www.geeksforgeeks.org/exceptions-in-java/

type and mostly occur at runtime. Some of the examples of errors are Out

of memory errors or System crash errors. Example 1 Run-time Error Java

// Java Program to Illustrate Error

// Stack overflow error via infinite recursion

 // Class 1 class

StackOverflow {

 // method of this class public

static void test(int i)

 {

 // No correct as base condition leads to

// non-stop recursion.

 if (i == 0) return;

else

{ test(i++);

 }

 }

}

// Class 2

// Main class public

class GFG {

 // Main driver method public static void main(String[] args)

 {

 // Testing for error by passing

 // custom integer as an argument

 StackOverflow.test(5);

 } }

	Objects and Classes in Java
	What is an object in Java
	What is a class in Java
	Instance variable in Java
	Object and Class Example: main within the class

	3 Ways to initialize object
	1) Object and Class Example: Initialization through reference
	2) Object and Class Example: Initialization through method
	3) Object and Class Example: Initialization through a constructor
	Object and Class Example: Employee

	Anonymous object
	Constructors in Java
	Need of Constructor
	Access Control

	USING JAVA OBJECTS
	Method Calling
	Message Passing in Java
	Passing and Returning Objects in Java
	Defining a constructor that takes an object of its class as a parameter

	How to Compare Two Objects in Java
	Java equals () Method
	Example of equals() method
	Difference Between == Operator and equals() Method

	Java hashCode() Method
	Example of hashCode() method

	Overriding equals() Method

	INHERITANCE
	Why use inheritance in java
	The syntax of Java Inheritance
	Java Inheritance Example
	Polymorphism in Java
	Example
	Example (1)

	Types of Polymorphism
	Example of static polymorphism
	Example of Dynamic polymorphism (or run time)
	Method Overloading in Java
	Different ways to overload the method
	1) Method Overloading: changing no. of arguments
	2) Method Overloading: changing data type of arguments
	Runtime Polymorphism in Java
	Example of Java Runtime Polymorphism

	Method Overriding in Java
	Usage of Java Method Overriding
	Rules for Java Method Overriding
	Example of method overriding
	Simple example of java package

	API in Java
	The Importance of Using APIs in Java
	The Java REST API work
	Types of Java APIs
	Java API example
	Advantages of API in Java
	The Java API Standard Library
	Securing APIs in Java
	Java Naming Convention
	Advantage of Naming Conventions in Java
	CamelCase in Java naming conventions
	Accessing a Package
	Properties of Hidden Classes
	Creating Hidden Classes
	Using Hidden Classes
	Java Static Import
	Simple Example of static import

	JAVA FILES AND I/O
	Reading and writing to files (only txt files)
	Manipulating Input data
	Opening and Closing Stream

	File handling Classes and Methods

	Exception handling Exception Overview
	Exception Keywords
	Catching Exceptions
	Defining and throwing exceptions
	Getting started with Java throw exception
	Checked exceptions in Java

